Sharyland ISD Study Guide

Geometry

Semester B

Student Name:
Student ID:

Geometry Semester B CBE

REVIEW

\qquad 1. What are the major arcs of $\odot \bigcirc$ that contain point J ?

A. $\overrightarrow{J K H}, \overrightarrow{K L J}, \overrightarrow{L H K}$, and $\widehat{H J}$
B. $\widehat{J K H}, \overline{K L J}$, and $\widehat{H J}$
C. $\widehat{J K H}, \overrightarrow{J K L}, \overrightarrow{K L J}, \overrightarrow{K L H}, \overrightarrow{L H K}$, and $\overrightarrow{H J L}$
D. $\overparen{H J}, \overparen{H K}, \overparen{J K}, \overparen{J U}, \overparen{K X}$, and $\overparen{I H}$

Find the area. The figure is not drawn to scale.
2.

A. $82.96 \mathrm{~cm}^{2}$
B. $41.48 \mathrm{~cm}^{2}$
C. $0.7 \mathrm{~cm}^{2}$
D. $12.9 \mathrm{~cm}^{2}$

The polygons are similar, but not necessarily drawn to scale. Find the value of x.
3.

A. $x=5.5$
B. $x=7$
C. $x=10$
D. $x=13$

Find the value of the variable(s). If your answer is not an integer, leave it in simplest radical form.
4.

Not drawn to scale
A. $\frac{1}{2}$
B. $14 \sqrt{3}$
C. $7 \sqrt{3}$
D. 2
5.

A. $x=38 \sqrt{3}, y=19$
B. $x=38, y=19 \sqrt{3}$
C. $x=19 \sqrt{3}, y=38$
D. $x=19, y=38 \sqrt{3}$

Find the volume of the sphere shown. Give each answer rounded to the nearest cubic unit.
6.

A. $268 \mathrm{~mm}^{2}$
B. 1072 mm
C. $804 \mathrm{~mm}^{3}$
D. $2145 \mathrm{~mm}^{3}$
7. $m \overline{m E}=103$ and $\overline{m P C}=66$. Find $m \angle A$. (The figure is not drawn to scale.)

A. 84.5
B. 37
C. 18.5
D. 70
8. A manufacturer is designing a two-wheeled cart that can maneuver through tight spaces. On one test model, the wheel placement (center) and radius is modeled by the equation $(x+2)^{2}+(y+1.5)^{2}=4$. What is the graph that shows the position and radius of the wheels?
A.

C.

B.

D.

9. You roll a standard number cube. Find P (number is not 2).
A. $\frac{2}{3}$
B. $\frac{5}{6}$
C. $\frac{1}{2}$
D. $\frac{1}{6}$

Find the area of the trapezoid. Leave your answer in simplest radical form.
10.

12 in.
Not drawn to scale
A. 75 in. 2
B. $80 \mathrm{in.}^{2}$
C. 77.2 in. ${ }^{2}$
D. $70 \mathrm{in.}^{2}$

Find the volume of the right cone shown as a decimal rounded to the nearest tenth.
\qquad 11.

Not drawn to scale
A. $5952.3 \mathrm{~m}^{3}$
B. $850.3 \mathrm{~m}^{3}$
C. $1488.1 \mathrm{~m}^{3}$
D. $2232.1 \mathrm{~m}^{3}$
12. Find the radian measure of an angle of 100°.
A. $\frac{9}{5 \pi}$
B. $\frac{5}{9 \pi}$
C. $\frac{5 \pi}{9}$
D. $\frac{9 \pi}{5}$
13. An airplane pilot over the Pacific sights an atoll at an angle of depression of 5°. At this time, the horizontal distance from the airplane to the atoll is 4629 meters. What is the height of the plane to the nearest meter?

Not drawn to scale
A. 4647 m
B. 403 m
C. 4611 m
D. 405 m
14. Jason wants to walk the shortest distance to get from the parking lot to the beach.

a. How far is the spot on the beach from the parking lot?
b. How far will his place on the beach be from the refreshment stand?
A. $38 \mathrm{~m} ; 12 \mathrm{~m}$
B. $24 \mathrm{~m} ; 18 \mathrm{~m}$
C. $34 \mathrm{~m} ; 16 \mathrm{~m}$
D. $24 \mathrm{~m} ; 32 \mathrm{~m}$
15. A large totem pole in the state of Washington is 100 feet tall. At a particular time of day, the totem pole casts a 249 -foot-long shadow. Find the measure of $\angle A$ to the nearest degree.

A. 35°
B. 68°
C. 45°
D. 22°
16. For $m \angle A O C=53$, find $m \angle B P O$.
A. 143
B. 53
C. 37
D. 63.5

Find the surface area of the cylinder in terms of π.
\qquad 17.

Not drawn to scale
A. 112π in.
B. 144π in.
C. 128π in.
D. $240 \pi \mathrm{in}$.

Find the surface area of the regular pyramid shown to the nearest whole number.
18.

Not drawn to scale
A. $45 \mathrm{ft}^{\text {f }}$
B. $15 \mathrm{ft}^{4}$
C. $81 \mathrm{ft}^{4}$
D. $36 \mathrm{ft}^{\text {t }}$

Find the length of the missing side. The triangle is not drawn to scale.
19.

12
A. 18
B. 2
C. 5
D. 25
B.
D.
20. Pentagon RSTUV is circumscribed about a circle. Solve for x for $R S=7, S T=8$, $T U=10, U V=13$, and $V R=14$. The figure is not drawn to scale.

A. 5
B. 10.5
C. 10
D. 2
21. Which graph shows $T_{\langle-3,3\rangle}(\triangle A B C)$?

A.

C.

B.

D.

22. What is the value of x ?

A. $\frac{3}{4}$
B. $\frac{52}{3}$
C. 17
D. $\frac{52}{7}$
23. What is the value of x to the nearest tenth?

Not drawn to scale.
A. 9.9
B. 3.3
C. 16.3
D. 2.2
24. Describe in words the translation of X represented by the translation rule $T_{\langle 4,-1\rangle}(X)$.
A. 1 units to the right and 4 units up
B. 4 units to the left and 1 units up
C. 4 units to the right and 1 units down
D. 4 units to the left and 1 units down

Find the value of x. If necessary, round your answer to the nearest tenth. The figures are not drawn to scale.
\qquad 25.

A. 28.8
B. 3.5
C. 230
D. 18.4
26. $A B=19, B C=8$, and $C D=9$

A. 18.78
B. 24
C. 15
D. 16.89

Find the value of x. If necessary, round your answer to the nearest tenth. O is the center of the circle. The figure is not drawn to scale.
\qquad 27.

A. 5
B. 15
C. 12
D. 9
28. Find the measure of $\angle B A C$ in circle O. (The figure is not drawn to scale.)

A. 34.5
B. 21
C. 138
D. 69

The figures are similar. Give the ratio of the perimeters and the ratio of the areas of the first figure to the second. The figures are not drawn to scale.
29.

30

35
A. $7: 8$ and $49: 64$
B. $6: 7$ and $49: 64$
C. $7: 8$ and $36: 49$
D. $6: 7$ and $36: 49$
30. Write a rule in function notation to describe the transformation that is a reflection across the y-axis.
A. $R_{x-0}(x, y)$
B. $R_{y_{-}(x, y)}$
C. $R_{y=0}(x, y)$
D. $R_{x--1}(x, y)$
31. This is a spinner used in a board game. What is the probability that the spinner will land on a multiple of 3 and 4 ?

A. $\frac{1}{4}$
B. $\frac{1}{8}$
C. $\frac{1}{2}$
D. $\frac{3}{8}$

What similarity statement can you write relating the three triangles in the diagram?
32.

A. $\triangle T K M \sim \triangle M K L \sim \triangle M U L$
B. $\triangle J L M \sim \triangle M L K \sim \triangle I K M$
C. $\triangle M M K \sim \triangle M L K \sim \triangle J L M$
D. $\triangle M M K \sim \triangle L M K \sim \Delta J L M$
33.

A. $\triangle U W W \sim \triangle U W T \sim \Delta W V T$
B. $\triangle W U T \sim \triangle V U W \sim \triangle W V T$
C. $\triangle U W W \sim \triangle W U T \sim \triangle W V T$
D. $\triangle T W V \sim \triangle V U W \sim \triangle U W T$

The hexagon GIKMPR and $\triangle F J N$ are regular. The dashed line segments form 30° angles.

34. What is $r_{(340, O)}(M)$?
A. O
B. R
C. P
D. I
35. The trapezoids are similar. The area of the smaller trapezoid is $46 \mathrm{~m}^{2}$. Find the area of the larger trapezoid to the nearest whole number.

A. 64 m
B. 647 m
C. $900 \mathrm{~m}^{\text {a }}$
D. $17 \mathrm{~m}^{4}$

Use a trigonometric ratio to find the value of x. Round your answer to the nearest tenth.
\qquad 36.

Not drawn to scale
A. 24.7
B. 3.3
C. 3.1
D. 8.5

Assume that lines that appear to be tangent are tangent. O is the center of the circle. Find the value of x. (Figures are not drawn to scale.)
37. $m \angle O=154$

A. 26
B. 77
C. 334
D. 308
38. What is the value of x ?

A. 12
B. 6
C. 2
D. 8
39. Find the exact area of the shaded region.

A. $(192 \pi-144) \mathrm{m}^{2}$
C. $(8 \pi-144 \sqrt{3}) \mathrm{m}^{2}$
B. $(192 \pi-144 \sqrt{3}) \mathrm{m}^{2}$
D. none of these
40. Find the length of the altitude drawn to the hypotenuse. The triangle is not drawn to scale.

A. 34
B. 168
C. $\sqrt{34}$
D. $2 \sqrt{42}$
41. Find the area of the regular polygon. Round your answer to the nearest tenth.

A. $80.0 \mathrm{in.}^{2}$
B. $483.0 \mathrm{in}^{2}$
C. 966.1 in. ${ }^{2}$
D. 176.6 in. ${ }^{2}$
42. What is the value of x, given that $\overline{P Q} \| \overline{B C}$?

A. 9
B. 8
C. 12
D. 6
43. Write the ratios for $\sin X$ and $\cos X$.

A. $\sin X=\sqrt{119}, \cos X=5$
B. $\sin X=\frac{\sqrt{119}}{12}, \cos X=\frac{5}{12}$
C. $\sin X=\frac{\sqrt{119}}{5}, \cos X=\frac{5}{\sqrt{119}}$
D. $\sin X=\frac{5}{\sqrt{119}}, \cos X=\frac{\sqrt{119}}{5}$

Are the polygons similar? If they are, write a similarity statement and give the scale factor.

Not drawn to scale.
44.
A. $A B C D \sim K L M M ; 7.8: 1.4$
C. The polygons are not similar.
B. $A B C D \sim N K L H ; 3: 3.36$
D. $A B C D \sim K L M A F ; 3: 1.4$
45. In $\triangle Q R S, Q R=4, R S=15$, and $m \angle R=36$. In $\triangle U V T, V T=8, T U=32$, and $m \angle T=36$.
A. $\triangle S R Q \sim \triangle U T V ; \frac{1}{2}$
C. $\triangle Q R S \sim \triangle V T U ; \frac{15}{32}$
B. $\triangle R S Q \sim \triangle T U N ; \frac{1}{2}$
D. The triangles are not similar.

Not drawn to scale.
\qquad 46.
A. $\triangle R S T \sim \triangle V W U ; \frac{6}{5}$
C. $\triangle B S T \sim \triangle U N W ; \frac{5}{6}$
B. $\triangle R S T \sim \triangle W U V ; \frac{5}{6}$
D. The triangles are not similar.
47. Find the length of $\widehat{Y P X}$. Leave your answer in terms of π.

A. $18 \pi \mathrm{~m}$
B. $9 \pi \mathrm{~m}$
C. $540 \pi \mathrm{~m}$
D. $3 \pi \mathrm{~m}$
48. Write a rule in function notation to describe the transformation that is a reflection across the x-axis.
A. $R_{y-0}(x, y)$
B. $R_{x-0}(x, y)$
C. $R_{y_{-x}(x, y)}$
D. $R_{\mathrm{x}-\mathrm{p}}(x, y)$
49. Find the length of the hypotenuse.

A. 6
B. 12
C. 18
D. 5

Find the area of the triangle. Give the answer to the nearest tenth. The drawing may not be to scale.
50.

A. $19.6 \mathrm{~m}^{4}$
B. $10.5 \mathrm{~m}^{4}$
C. $9.8 \mathrm{~m}^{\text {a }}$
D. $21.0 \mathrm{~m}^{\text {S }}$
51. Find the degree measure of an angle of $\frac{11 \pi}{6}$ radians.
A. $\frac{11 \pi}{1080}$ 。
B. 5.76°
C. 330°
D. $330 \pi^{\circ}$
52. A low-wattage radio station can be heard only within a certain distance from the station. On the graph below, the circular region represents that part of the city where the station can be heard, and the center of the circle represents the location of the station. Which equation represents the boundary for the region where the station can be heard?

A. $(x+6)^{5}+(y+1)^{s}=16$
B. $(x-6)+(y-1)=16$
C. $(x+6)_{s}^{s}+(y+1)_{s}^{s}=32$
D. $(x-6)+(y-1)=32$
53. Find the glide reflection image of the black triangle for the composition $\left(R_{x-1} \circ T_{\langle 0,-7}\right)$.
A.

C.

B.

D.

54. Pierre built the model shown in the diagram below for a social studies project. He wants to be able to show the inside of his model, so he sliced the figure as shown. Describe the cross section he created.

A. hexagon
B. pentagon
C. pyramid
D. rectangle

Use the given circle. Find the length \boldsymbol{s} to the nearest tenth.
\qquad 55.

A. 26.2 m
B. 2.6 m
C. 4.2 m
D. 13.1 m
56. Find the measure of $\widehat{A B C}$.

The figure is not drawn to scale.

A. 85
B. 95
C. 275
D. 75
57. What is the value of x ?

A. 7.5
B. 2.5
C. 5
D. 10

Find the geometric mean of the pair of numbers.
58. 6 and 7
A. $\sqrt{42}$
B. 42
C. 7
D. $4 \sqrt{3}$

Find the value of x. Round to the nearest tenth.
\qquad 59.

Not drawn to scale
A. 12.1
B. 16.3
C. 12.5
D. 16.2
60. Find the area of a sector with a central angle of 190° and a diameter of 7.9 cm . Round to the nearest tenth.
A. $3.3 \mathrm{~cm}^{2}$
B. $103.5 \mathrm{~cm}^{2}$
C. $8.3 \mathrm{~cm}^{2}$
D. $25.9 \mathrm{~cm}^{2}$
61. The two rectangles are similar. Which is the correct proportion for corresponding sides?

A. $\frac{12}{8}=\frac{24}{4}$
B. $\frac{4}{12}=\frac{24}{8}$
C. $\frac{12}{4}=\frac{8}{24}$
D. $\frac{12}{4}=\frac{24}{8}$

Write the standard equation for the circle.

62. center $(-6,-8)$, that passes through $(0,0)$
A. $(x-6)^{5}+(y-8)^{\star}=196$
B. $(x+6)+(y+8)=14$
C. $(x-6)^{s}+(y-8)^{s}=10$
D. $(x+6)^{4}+(y+8)^{4}=100$
63. Use the circle below. What is the measure of θ (in radians) of the central angle?

A. $\frac{\pi}{15}$
B. $\frac{\pi}{10}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{75}$
64.

 What is the area of the following sector? (approximate pi to 3.14)
A. 452.16 sq. units
B. 120 sq. units
C. $\quad 150.72$ sq. units
D. $1,356.48$ sq. units
65. Find the value of the x

Geometry Semester B CBE

REVIEW

Answer Section

1. ANS: A PTS: 1 DIF: L3 REF: 11-1 Circles and Arcs

OBJ: 11-1.1 To find the measures of central angles and arcs \quad STA: (10)(B)|(12)(B)
TOP: 11-1 Problem 1 Naming Arcs KEY: major arc | minor arc | semicircle
2. ANS: B PTS: 1 DIF: L3

REF: 13-1 Areas of Parallelograms and Triangles
OBJ: 13-1.1 To find the areas of parallelograms and triangles
STA: (11)(A)| (11)(B)
TOP: 13-1 Problem 1 Finding the Area of a Parallelogram
KEY: area | parallelogram | base | height
3. ANS: D PTS: 1 DIF: L3

REF: 9-1 Similar Polygons
OBJ: 9-1.1 To identify and apply similar polygons
STA: (7)(B)
TOP: 9-1 Problem 3 Using Similar Polygons
KEY: corresponding sides | proportion | similar polygons
4. ANS: C PTS: 1 DIF: L2 REF: 10-2 Special Right Triangles

OBJ: 10-2.1 To use the properties of 45-45-90 and 30-60-90 triangles
STA: (6)(D)| (9)(B) TOP: 10-2 Problem 4 Using the Length of One Side
KEY: special right triangle | leg | hypotenuse
5. ANS: C PTS: 1 DIF: L3 REF: $10-2$ Special Right Triangles

OBJ: 10-2.1 To use the properties of 45-45-90 and 30-60-90 triangles
STA: (6)(D)| (9)(B) TOP: 10-2 Problem 4 Using the Length of One Side
KEY: special right triangle | leg | hypotenuse
6. ANS: D PTS: 1 DIF: L2

REF: 14-6 Surface Areas and Volumes of Spheres
OBJ: $\quad 14-6.1$ To find the surface area and volume of a sphere \quad STA: (10)(A)|(10)(B)|(11)(C)|(11)(D)
TOP: 14-6 Problem 3 Finding the Volume of a Sphere
KEY: volume of a sphere | sphere | volume formulas | volume
7. ANS: C PTS: 1 DIF: L3

REF: 12-4 Angle Measures and Segment Lengths
OBJ: 12-4.1 To find measures of angles formed by chords, secants, and tangents
STA: (5)(A)|(6)(A)|(6)(D)|(12)(A) TOP: 12-4 Problem 2 Finding Angle Measures
KEY: circle \mid secant \mid angle measure \mid arc measure | intersection outside the circle
8. ANS: B PTS: 1 DIF: L3 REF: 11-4 Circles in the Coordinate Plane

OBJ: 11-4.2 To write the equation of a circle STA: (2)(B)|(12)(E)
TOP: 11-4 Problem 5 Graphing a Circle Given Its Equation
KEY: equation of a circle \mid center \mid radius \mid point on the circle | algebra
9. ANS: B PTS: 1 DIF: L2

REF: 15-1 Experimental and Theoretical Probability
OBJ: 15-1.1 To calculate experimental and theoretical probability
STA: (13)(C) TOP: 15-1 Problem 3 Using Probabilities of Events and Their Complements
KEY: probability | theoretical probability \mid complement of an event | outcome
10. ANS: D PTS: 1 DIF: L3

REF: 13-2 Areas of Trapezoids, Rhombuses, and Kites
OBJ: 13-2.1 To find the area of a trapezoid, rhombus, or kite
STA: (6)(D)|(9)(B)|(11)(B)
TOP: 13-2 Problem 1 Area of a Trapezoid
KEY: trapezoid | area
11. ANS: C PTS: 1 DIF: L3

REF: 14-5 Volumes of Pyramids and Cones
OBJ: 14-5.1 To find the volume of a pyramid and of a cone STA: (10)(B)|(11)(D)
TOP: 14-5 Problem 3 Finding the Volume of a Cone

KEY: volume of a cone | volume formulas | volume | cone
12. ANS: C PTS: 1 DIF: L3

OBJ: 11-2.1 To use radian measure for angles
TOP: 11-2 Problem 2 Using Dimensional Analysis
KEY: central angle | intercepted arc | radian
13. ANS: D PTS: 1 DIF: L3

REF: 10-4 Angles of Elevation and Depression
OBJ: 10-4.1 To use angles of elevation and depression to solve problems
STA: (9)(A) TOP: 10-4 Problem 3 Using the Angle of Depression
KEY: tangent | angles of elevation and depression | word problem | problem solving
14. ANS: D PTS: 1 DIF: L4 REF: 9-4 Similarity in Right Triangles

OBJ: 9-4.1 To find and use relationships in similar right triangles

KEY: corollaries of the geometric mean \mid multi-part question \mid word problem
15. ANS: D PTS: 1 DIF: L3 REF: 10-3 Trigonometry

OBJ: 10-3.1 To use the sine, cosine, and tangent ratios to determine side lengths and angle measures in right
triangles STA: (9)(A)
TOP: 10-3 Problem 2 Using a Trigonometric Ratio to Find Distance
KEY: tangent | word problem | problem solving
16. ANS: C PTS: 1 DIF: L4 REF: 12-1 Tangent Lines

OBJ: 12-1.1 To use properties of a tangent to a circle \quad STA: (6)(A)| (9)(B)| (12)(A)
TOP: 12-1 Problem 1 Finding Angle Measures
KEY: properties of tangents | tangent to a circle | Tangent Theorem
17. ANS: B PTS: 1 DIF: L3

REF: 14-2 Surface Areas of Prisms and Cylinders
OBJ: 14-2.1 To find the surface area of a prism and a cylinder STA: (10)(B)|(11)(C)
TOP: 14-2 Problem 3 Finding Total Surface Area of a Cylinder
KEY: surface area of a cylinder | cylinder | surface area formulas | surface area
18. ANS: A PTS: 1 DIF: L3

REF: 14-3 Surface Areas of Pyramids and Cones
OBJ: 14-3.1 To find the surface area of a pyramid and a cone STA: (9)(B)|(10)(B)|(11)(C)
TOP: 14-3 Problem 1 Finding the Total Surface Area of a Pyramid
KEY: surface area of a pyramid | surface area \mid surface area formulas | pyramid
19. ANS: C PTS: 1 DIF: L3

REF: 10-1 The Pythagorean Theorem and Its Converse
OBJ: 10-1.1 To use the Pythagorean Theorem and its converse STA: (6)(D)| (9)(B)
TOP: 10-1 Problem 3 Finding the Length of a Leg
KEY: Pythagorean Theorem | leg | hypotenuse | Pythagorean triple
20. ANS: A PTS: 1 DIF: L3 REF: 12-1 Tangent Lines

OBJ: 12-1.1 To use properties of a tangent to a circle STA: (6)(A)|(9)(B)|(12)(A)
TOP: 12-1 Problem 5 Circles Inscribed in Polygons
KEY: properties of tangents | tangent to a circle | pentagon
21. ANS: D PTS: 1 DIF: L3 REF: 8-1 Translations

OBJ: 8-1.2 To find translation images of figures
TOP: 8-1 Problem 3 Finding the Image of a Translation
KEY: translation | transformation | image | preimage
22. ANS: B PTS: 1 DIF: L4 REF: 9-5 Proportions in Triangles

OBJ: 9-5.1 To use the Triangle Proportionality Theorem and the Triangle-Angle-Bisector Theorem
STA: (5)(A) \mid (7)(B)|(8)(A) TOP: 9-5 Problem 4 Finding a Length
KEY: corollary of Side-Splitter Theorem
23. ANS: C PTS: 1 DIF: L3 REF: 9-5 Proportions in Triangles

OBJ: 9-5.1 To use the Triangle Proportionality Theorem and the Triangle-Angle-Bisector Theorem
STA: (5)(A)| (7)(B)| (8)(A) TOP: 9-5 Problem 5 Using the Triangle-Angle-Bisector
Theorem
KEY: Triangle-Angle-Bisector Theorem
24. ANS: C PTS: 1 DIF: L4 REF: 8-1 Translations

OBJ: 8-1.2 To find translation images of figures \quad STA: (3)(A)|(3)(C)|(6)(C)
TOP: 8-1 Problem 4 Writing a Rule to Describe a Translation KEY: translation
25. ANS: A PTS: 1 DIF: L3

REF: 12-4 Angle Measures and Segment Lengths
OBJ: 12-4.2 To find the lengths of segments associated with circles
STA: (5)(A)|(6)(A)| (6)(D)|(12)(A) TOP: 12-4 Problem 4 Finding Segment Lengths
KEY: circle | chord | intersection inside the circle
26. ANS: C PTS: 1 DIF: L3

REF: 12-4 Angle Measures and Segment Lengths
OBJ: 12-4.2 To find the lengths of segments associated with circles
STA: (5)(A)| (6)(A)| (6)(D)|(12)(A) TOP: 12-4 Problem 4 Finding Segment Lengths
KEY: circle | intersection outside the circle | secant
27. ANS: B PTS: 1 DIF: L2 REF: 12-2 Chords and Arcs

OBJ: 12-2.1 To use congruent chords, arcs, central angles, and perpendicular bisectors to chords
STA: (5)(A)| (5)(C)| (6)(A)| (9)(B)| (12)(A)
TOP: 12-2 Problem 4 Using Diameters and Chords
KEY: bisected chords \mid circle | perpendicular | perpendicular bisector | Pythagorean Theorem | chord
28. ANS: A PTS: 1 DIF: L3 REF: 12-3 Inscribed Angles

OBJ: 12-3.1 To find the measure of an inscribed angle STA: (5)(A)| (12)(A)
TOP: 12-3 Problem 1 Using the Inscribed Angle Theorem
KEY: circle | inscribed angle | intercepted arc | inscribed angle-arc relationship
29. ANS: D PTS: 1 DIF: L3

REF: 13-4 Perimeters and Areas of Similar Figures
OBJ: 13-4.1 To find the perimeters and areas of similar polygons
STA: (10)(B)|(11)(A)
TOP: 13-4 Problem 2 Finding Ratios in Similar Figures
KEY: perimeter | area | similar figures
30. ANS: A PTS: 1 DIF: L4 REF: 8-2 Reflections

OBJ: 8-2.1 To find reflection images of figures STA: (3)(A)|(3)(C)
TOP: 8-2 Problem 1 Reflecting a Point Across a Line KEY: reflection \| line of reflection
31. ANS: D PTS: 1 DIF: L2

REF: 15-1 Experimental and Theoretical Probability
OBJ: 15-1.1 To calculate experimental and theoretical probability
STA: (13)(C) TOP: 15-1 Problem 2 Calculating Theoretical Probability
KEY: theoretical probability | probability | outcome | event
32. ANS: C PTS: 1 DIF: L3 REF: 9-4 Similarity in Right Triangles

OBJ: 9-4.1 To find and use relationships in similar right triangles
STA: (7)(B)| (8)(A)|(8)(B) TOP: 9-4 Problem 2 Identifying Similar Triangles
KEY: similar triangles | altitude
33. ANS: A PTS: 1 DIF: L3 REF: 9-4 Similarity in Right Triangles

OBJ: 9-4.1 To find and use relationships in similar right triangles
STA: (7)(B)| (8)(A)|(8)(B) TOP: 9-4 Problem 2 Identifying Similar Triangles
KEY: similar triangles | altitude
34. ANS: B PTS: 1 DIF: L3 REF: 8-3 Rotations

OBJ: 8-3.1 To draw and identify rotation images of figures STA: (3)(A)|(3)(C)|(6)(C)

TOP: 8-3 Problem 2 Drawing Rotations in a Coordinate Plane
KEY: rotation | center of rotation | angle of rotation
35. ANS: B PTS: 1 DIF: L2

REF: 13-4 Perimeters and Areas of Similar Figures
OBJ: 13-4.1 To find the perimeters and areas of similar polygons
STA: (10)(B)|(11)(A)
TOP: 13-4 Problem 3 Finding Areas Using Similar Figures
KEY: similar figures | area | trapezoid
36. ANS: A PTS: 1 DIF: L2 REF: 10-3 Trigonometry

OBJ: 10-3.1 To use the sine, cosine, and tangent ratios to determine side lengths and angle measures in right triangles STA: (9)(A)
TOP: 10-3 Problem 2 Using a Trigonometric Ratio to Find Distance
KEY: tangent
37. ANS: A PTS: 1 DIF: L3 REF: 12-1 Tangent Lines

OBJ: 12-1.1 To use properties of a tangent to a circle STA: (6)(A)| (9)(B)| (12)(A)
TOP: 12-1 Problem 1 Finding Angle Measures
KEY: tangent to a circle | point of tangency | properties of tangents | central angle
38. ANS: D PTS: 1 DIF: L2 REF: 9-5 Proportions in Triangles

OBJ: 9-5.1 To use the Triangle Proportionality Theorem and the Triangle-Angle-Bisector Theorem
STA: (5)(A)|(7)(B)| (8)(A) TOP: 9-5 Problem 4 Finding a Length
KEY: corollary of Side-Splitter Theorem
39. ANS: B PTS: 1 DIF: L3 REF: 11-3 Areas of Circles and Sectors

OBJ: 11-3.1 To find the areas of circles, sectors, and segments of circles
STA: (9)(B)|(11)(B)|(12)(C) TOP: 11-3 Problem 3 Finding the Area of a Segment of a Circle
KEY: sector \mid circle \mid area \mid central angle
40. ANS: D PTS: 1 DIF: L3 REF: 9-4 Similarity in Right Triangles

OBJ: 9-4.1 To find and use relationships in similar right triangles

KEY: corollaries of the geometric mean | proportion
41. ANS: B \quad PTS: $1 \quad$ DIF: L3
OBJ: $13-3.1$ To find the area of a regular polygon

TOP: 13-3 Problem 3 Using Special Triangles to Find Area
KEY: regular polygon | area \mid apothem \mid radius \mid octagon
42. ANS: D PTS: 1 DIF: L2 REF: 9-5 Proportions in Triangles

OBJ: 9-5.1 To use the Triangle Proportionality Theorem and the Triangle-Angle-Bisector Theorem
STA: (5)(A)|(7)(B)| (8)(A) TOP: 9-5 Problem 3 Using the Triangle Proportionality
Theorem
KEY: Side-Splitter Theorem
43. ANS: B PTS: 1 DIF: L3 REF: 10-3 Trigonometry

OBJ: 10-3.1 To use the sine, cosine, and tangent ratios to determine side lengths and angle measures in right triangles STA: (9)(A) TOP: 10-3 Problem 1 Writing Trigonometric Ratios
KEY: cosine | sine
44. ANS: C PTS: $1 \quad$ DIF: L4
OBJ: 9-1.1 To identify and apply similar polygons
TOP: 9-1 Problem 2 Determining Similarity
45. ANS: D PTS: 1 DIF: L3

OBJ: 9-1.1 To identify and apply similar polygons
TOP: 9-1 Problem 2 Determining Similarity
KEY: similar polygons | corresponding sides | corresponding angles | scale factor
46. ANS: C PTS: 1 DIF: L3 REF: 9-1 Similar Polygons

OBJ: 9-1.1 To identify and apply similar polygons STA: (7)(B)

TOP: 9-1 Problem 2 Determining Similarity
KEY: similar polygons \mid corresponding sides \mid corresponding angles \mid scale factor
47. ANS: B PTS: 1 DIF: L3 REF: 11-1 Circles and Arcs

OBJ: 11-1.2 To find the circumference and arc length STA: (10)(B)|(12)(B)
TOP: 11-1 Problem 4 Finding Arc Length KEY: arc | circumference
48. ANS: A PTS: 1 DIF: L4 REF: 8-2 Reflections

OBJ: 8-2.1 To find reflection images of figures
STA: (3)(A)| (3)(C)
TOP: 8-2 Problem 1 Reflecting a Point Across a Line
KEY: reflection | line of reflection
49. ANS: A PTS: 1 DIF: L3 REF: 10-2 Special Right Triangles

OBJ: 10-2.1 To use the properties of 45-45-90 and 30-60-90 triangles
STA: (6)(D)|(9)(B) TOP: 10-2 Problem 1 Finding the Length of the Hypotenuse
KEY: special right triangle | hypotenuse
50. ANS: B PTS: 1 DIF: L3 REF: 13-5 Trigonometry and Area

OBJ: 13-5.1 To find areas of regular polygons and triangles using trigonometry
STA: (9)(A)|(11)(A) TOP: 13-5 Problem 3 Finding Area
KEY: area of a triangle | area | sine
51. ANS: C PTS: 1 DIF: L3 REF: 11-2 Radian Measure

OBJ: 11-2.1 To use radian measure for angles STA: (12)(B)|(12)(D)
TOP: 11-2 Problem 2 Using Dimensional Analysis
KEY: central angle | intercepted arc | radian
52. ANS: A PTS: 1 DIF: L4 REF: 11-4 Circles in the Coordinate Plane

OBJ: 11-4.1 To find the center and radius of a circle
STA: (2)(B)| (12)(E)
TOP: 11-4 Problem 3 Writing the Equation of a Circle
KEY: center | circle | coordinate plane | radius | equation of a circle | word problem
53. ANS: B PTS: 1 DIF: L3

REF: 8-5 Compositions of Rigid Transformations
OBJ: 8-5.1 To find compositions of rigid transformations, including glide reflections
STA: (3)(A)| (3)(B) TOP: 8-5 Problem 3 Finding a Glide Reflection Image
KEY: isometry | glide reflection
54. ANS: B PTS: 1 DIF: L3

REF: 14-1 Three-Dimensional Figures and Cross Sections
OBJ: 14-1.2 To visualize cross sections of space figures
TOP: 14-1 Problem 3 Describing a Cross Section
55. ANS: D PTS: 1 DIF: L3

OBJ: 11-2.2 To find the length of an arc of a circle
TOP: 11-2 Problem 3 Finding the Length of an Arc
KEY: central angle | intercepted arc | radian
56. ANS: A PTS: 1 DIF: L3

OBJ: 11-1.1 To find the measures of central angles and arcs
TOP: 11-1 Problem 2 Finding the Measures of Arcs
STA: (10)(A)
KEY: cross section | word problem
REF: 11-2 Radian Measure
STA: (12)(B)|(12)(D)

REF: 11-1 Circles and Arcs
STA: (10)(B)|(12)(B)
KEY: major arc | measure of an arc | arc
57. ANS: C PTS: 1 DIF: L4 REF: 9-5 Proportions in Triangles

OBJ: 9-5.1 To use the Triangle Proportionality Theorem and the Triangle-Angle-Bisector Theorem
STA: (5)(A)|(7)(B)|(8)(A) TOP: 9-5 Problem 3 Using the Triangle Proportionality
Theorem
KEY: Side-Splitter Theorem
58. ANS: A PTS: 1 DIF: L4 REF: 9-4 Similarity in Right Triangles

OBJ: 9-4.1 To find and use relationships in similar right triangles
STA: (7)(B)| (8)(A)| (8)(B)
TOP: 9-4 Problem 3 Finding the Geometric Mean
KEY: geometric mean \mid proportion
59. ANS: D PTS: 1 DIF: L3 REF: 10-3 Trigonometry

OBJ: 10-3.1 To use the sine, cosine, and tangent ratios to determine side lengths and angle measures in right triangles STA: (9)(A)
TOP: 10-3 Problem 2 Using a Trigonometric Ratio to Find Distance
KEY: cosine
60. ANS: D PTS: 1 DIF: L3 REF: 11-3 Areas of Circles and Sectors

OBJ: 11-3.1 To find the areas of circles, sectors, and segments of circles
STA: (9)(B)|(11)(B)|(12)(C)
TOP: 11-3 Problem 2 Finding the Area of a Sector of a Circle
KEY: sector \mid circle \mid area \mid central angle
61. ANS: D PTS: 1 DIF: L3

OBJ: 9-1.1 To identify and apply similar polygons
TOP: 9-1 Problem 1 Understanding Similarity
KEY: similar polygons \mid corresponding sides
62. ANS: D DTS: 1 DIF: L2 REF. 11-4 Circles in the Coordinate

OBJ: 11-4.1 To find the center and radius of a circle
TOP: 11-4 Problem 4 Using the Center and a Point on a Circle
KEY: equation of a circle \mid center \mid radius \mid point on the circle
63. ANS: C PTS: 1 DIF: L3

OBJ: 11-2.1 To use radian measure for angles
TOP: 11-2 Problem 1 Finding the Radian Measure of An Angle KEY: intercepted arc | radian

REF: 11-2 Radian Measure
STA: (12)(B)|(12)(D)
64. ANS:

C

PTS: 1
65. ANS:
$\mathrm{x}=-8$

PTS: 1

