Sharyland ISD Study Guide

Geometry

Semester A

Student Name:
Student ID:

Geometry Semester A CBE

REVIEW

\qquad 1. Which angles are corresponding angles?

A. $\angle 8$ and $\angle 16$
C. $\angle 7$ and $\angle 8$
B. $\angle 4$ and $\angle 8$
D. none of these
\qquad 2. What is the name of the segment inside the large triangle?

A. perpendicular bisector
C. median
B. angle bisector
D. altitude
\qquad 3. Based on the pattern, what are the next two terms of the sequence?
$9, \frac{9}{5}, \frac{9}{25}, \frac{9}{125}, \frac{9}{625}, \ldots$
A. $\frac{9}{3125}, \frac{9}{15625}$
B. $\frac{9}{3125}, \frac{9}{3130}$
C. $\frac{9}{630}, \frac{9}{3130}$
D. $\frac{9}{630}, \frac{9}{635}$
\qquad 4. If $E F=3 x-5, F G=4 x-9$, and $E G=28$, find the values of $x, E F$, and $F G$. The drawing is not to scale.

A. $x=6, E F=13, F G=15$
B. $x=6, E F=23, F G=33$
C. $x=4, E F=7, F G=7$
D. $x=4, E F=13, F G=15$
5. Find the value of x. The diagram is not to scale.

A. 45
B. 145
C. 35
D. 90
6. Find the distance between points $P(8,2)$ and $Q(3,8)$ to the nearest tenth.
A. 7.8
B. 14.9
C. 11
D. 61
7. Write the tangent ratios for $\angle P$ and $\angle Q$.

Not drawn to scale
A. $\tan P=\frac{29}{20} ; \tan Q=\frac{20}{29}$
B. $\tan P=\frac{29}{21} ; \tan Q=\frac{21}{29}$
C. $\tan P=\frac{20}{21} ; \tan Q=\frac{21}{20}$
D. $\tan P=\frac{21}{20} ; \tan Q=\frac{20}{21}$
\qquad 8. The Polygon Angle-Sum Theorem states: The sum of the measures of the angles of an n-gon is \qquad .
A. $(n-1) 180$
B. $(n-2) 180$
C. $\frac{n-2}{180}$
D. $\frac{180}{n-1}$
9. If T is the midpoint of $\overline{S U}$, what are $S T, T U$, and $S U$?

A. $S T=9, T U=54$, and $S U=108$
B. $S T=18, T U=18$, and $S U=36$
C. $S T=54, T U=54$, and $S U=108$
D. $S T=70, T U=70$, and $S U=140$
10. Find the value of the variable if $m \| l, m \angle 1=2 x+44$ and $m \angle 5=5 x+38$. The diagram is not to scale.

A. -2
B. 2
C. 3
D. 1

Find the value of x. Round the length to the nearest tenth.
\qquad 11.

Not drawn to scale
A. 13.1 cm
B. 9.2 cm
C. 7.1 cm
D. 8.4 cm
12.

Not drawn to scale
A. 7.6 ft
B. 15.3 ft
C. 7.9 ft
D. 10.6 ft
13. Supply the missing reasons to complete the proof.

Given: $\angle Q \cong \angle T$ and $\overline{Q R} \cong \overline{T R}$
Prove: $\overline{P R} \cong \overline{S R}$

Statement	Reasons
1. $\angle Q \cong \angle T$ and	1. Given
$\overline{Q R \cong \overline{T R}}$	
2. $\angle P R Q \cong \angle S R T$	2. Vertical angles are congruent.
3. $\triangle P R Q \cong \triangle S R T$	3. $\frac{?}{?}$
4. $\overline{P R} \cong \overline{S R}$	4. $?$

A. ASA; Corresp. parts of $\cong \Delta$ are \cong.
C. ASA; Substitution
B. AAS; Corresp. parts of $\cong \Delta$ are \cong
D. SAS; Corresp. parts of $\cong \Delta$ are \cong
14. Two sides of a triangle have lengths 10 and 15 . What must be true about the length of the third side?
A. less than 15
B. less than 10
C. less than 25
D. less than 5
15. What additional information will allow you to prove the triangles congruent by the HL Theorem?

A. $\overline{A C} \cong \overline{D C}$
B. $\angle A \cong \angle E$
C. $m \angle B C E=90$
D. $\overline{A C} \cong \overline{B D}$
16. Use the Law of Detachment to draw a conclusion from the two given statements. If not possible, write not possible.

I can go to the concert if I can afford to buy a ticket.
I can go to the concert.
A. If I can go to the concert, I can afford the ticket.
B. I cannot afford to buy the ticket.
C. I can afford to buy a ticket.
D. not possible
17. A triangular side of the Transamerica Pyramid Building in San Francisco, California, is 149 feet at its base. If the distance from a base corner of the building to its peak is 859 feet, how wide is the triangle halfway to the top?

Transamerica Pyramid

A. 429.5 ft
B. 298 ft
C. 149 ft
D. 74.5 ft
18. Which choice shows a true conditional, with the hypothesis and conclusion identified correctly?
A. Yesterday was Monday if tomorrow is Thursday.

Hypothesis: Tomorrow is Thursday.
Conclusion: Yesterday was Monday.
B. Yesterday was Tuesday if tomorrow is Thursday.

Hypothesis: Tomorrow is Thursday.
Conclusion: Yesterday was Tuesday.
C. If tomorrow is Thursday, then yesterday was Tuesday.

Hypothesis: Yesterday was Tuesday.
Conclusion: Tomorrow is Thursday.
D. If tomorrow is Thursday, then yesterday was Tuesday.

Hypothesis: Yesterday was Tuesday.
Conclusion: Tomorrow is not Thursday.

Write an equation for the line that is parallel to the given line and passes through the given point.

19. $y=5 x+8 ;(2,16)$
A. $y=-\frac{1}{5} x-6$
B. $y=5 x-78$
C. $y=\frac{1}{5} x+6$
D. $y=5 x+6$
20. Find the values of x and y.

A. $x=46, y=44$
B. $x=90, y=46$
C. $x=90, y=44$
D. $x=44, y=46$
21. How many sides does a regular polygon have if each exterior angle measures 20?
A. 21 sides
B. 20 sides
C. 18 sides
D. 17 sides
22. What is the negation of this statement?

Miguel has three cats.
A. Miguel does not like cats.
B. Miguel has no cats.
C. The cat has three owners.
D. Miguel does not have three cats.
23. If $m \angle A O C=69^{\circ}, m \angle B O C=2 x+10$, and $m \angle A O B=4 x-15$, find the degree measure of $\angle B O C$ and $\angle A O B$ The diagram is not to scale.

A. $m \angle B O C=24^{\circ} ; m \angle A O B=43^{\circ}$
B. $m \angle B O C=34^{\circ} ; m \angle A O B=33^{\circ}$
C. $m \angle B O C=33^{\circ} ; m \angle A O B=34^{\circ}$
D. $m \angle B O C=43^{\circ} ; m \angle A O B=24^{\circ}$
24. Name the theorem or postulate that lets you immediately conclude $\triangle A B D \cong \triangle C B D$.

A. AAS
B. SAS
C. ASA
D. none of these
25. What is the value of x ?

Drawing not to scale
A. -16
B. 60
C. 16
D. 120
26. Write this statement as a conditional in if-then form:

All triangles have three sides.
A. If a figure is a triangle, then all triangles have three sides.
B. If a figure has three sides, then it is not a triangle.
C. If a figure is a triangle, then it has three sides.
D. If a triangle has three sides, then all triangles have three sides.
27. Find the circumcenter of the triangle.

A. $\left(-\frac{1}{2}, \frac{3}{2}\right)$
B. $\left(-2, \frac{3}{2}\right)$
C. $\left(-\frac{1}{2},-1\right)$
D. $\left(\frac{3}{2},-\frac{1}{2}\right)$
28. Construct the line perpendicular to $\overline{K L}$ at point M.

A.

C.

B.

D.

29. What is the converse of the following conditional?

If a point is in the fourth quadrant, then its coordinates are negative.
A. If the coordinates of a point are not negative, then the point is not in the fourth quadrant.
B. If a point is in the fourth quadrant, then its coordinates are negative.
C. If a point is not in the fourth quadrant, then the coordinates of the point are not negative.
D. If the coordinates of a point are negative, then the point is in the fourth quadrant.
30. Find the value of x. The diagram is not to scale.

A. $x=15$
B. $x=60$
C. $x=21$
D. none of these
31. Find the value of x.

A. 8
B. 7
C. 11.5
D. 10
32. Use the Law of Syllogism to draw a conclusion from the two given statements.

If you exercise regularly, then you have a healthy body. If you have a healthy body, then you have more energy.
A. You have a healthy body.
B. If you do not have more energy, then you do not exercise regularly.
C. You have more energy.
D. If you exercise regularly, then you have more energy.
33. Find the missing angle measures. The diagram is not to scale.

A. $x=124, y=125$
B. $x=56, y=124$
C. $x=114, y=56$
D. $x=56, y=114$
34. Find $m \angle A$. The diagram is not to scale.

A. 63
B. 117
C. 107
D. 73
35. Given $\triangle Q R E \cong \triangle T U F, Q S=3 v+2$, and $T V=7 v-6$, find the length of $Q S$ and $T V$.
A. 8
B. 20
C. 2
D. 9
\qquad 36. Which pair of triangles is congruent by ASA?
A.

C.

B.

D.

37. If $B C D E$ is congruent to $O P Q R$, then $\overline{D E}$ is congruent to ?
A. $\overline{Q R}$
B. $\overline{Q P}$
C. $\overline{Q R}$
D. $\overline{P Q}$
38. Which diagram suggests a correct construction of a line parallel to given line w and passing through given point K ?
A.

C.

B.

D.

39. Which three lengths could be the lengths of the sides of a triangle?
A. $21 \mathrm{~cm}, 7 \mathrm{~cm}, 6 \mathrm{~cm}$
B. $12 \mathrm{~cm}, 5 \mathrm{~cm}, 17 \mathrm{~cm}$
C. $10 \mathrm{~cm}, 15 \mathrm{~cm}, 24 \mathrm{~cm}$
D. $9 \mathrm{~cm}, 22 \mathrm{~cm}, 11 \mathrm{~cm}$
\qquad 40. Name the line and plane shown in the diagram.

A. $\overleftrightarrow{V W}$ and plane $V W Y$
C. line V and plane $V W Y$
B. $\overleftrightarrow{W V}$ and plane $Y X$
D. \overleftrightarrow{W} and plane $Y V$
41. Justify the last two steps of the proof.

Given: $\overline{R S} \cong \overline{U T}$ and $\overline{R T} \cong \overline{U S}$
Prove: $\triangle R W T \cong \triangle U T S$

Proof:

1. $\overline{R S} \cong \overline{U T}$
2. Given
3. $\overline{R T} \cong \overline{U S}$
4. Given
5. $\overline{S T} \cong \overline{T S}$
3.?
6. $\triangle R S T \cong \triangle U T S$
7. ?
A. Reflexive Property of \cong; SAS
C. Symmetric Property of \cong; SAS
B. Symmetric Property of \cong; SSS
D. Reflexive Property of \cong; SSS
8. Given: $\overleftrightarrow{A B}$ is the perpendicular bisector of $I K$. Name two lengths that are equal.

9. B is the midpoint of $\overline{A C}$ and D is the midpoint of $\overline{C E}$. Solve for x, given $B D=5 x+3$ and $A E=4 x+18$.

10. Q is equidistant from the sides of $\angle T S R$. Find the value of x. The diagram is not to scale.

A. 2
B. 14
C. 24
D. 12
11. Identify the hypothesis and conclusion of this conditional statement:

If two lines intersect at right angles, then the two lines are perpendicular.
A. Hypothesis: Two lines intersect at right angles.

Conclusion: The two lines are perpendicular.
B. Hypothesis: The two lines are not perpendicular.

Conclusion: Two lines intersect at right angles.
C. Hypothesis: The two lines are perpendicular.

Conclusion: Two lines intersect at right angles.
D. Hypothesis: Two lines intersect at right angles.

Conclusion: The two lines are not perpendicular.
46. Which diagram shows a point P an equal distance from points A, B, and C ?
A.

C.

B.

D.

47. Name the point of concurrency of the angle bisectors.

A. A
B. C
C. B
D. not shown
48. Write the tangent ratios for $\angle Y$ and $\angle Z$.

Not drawn to scale
A. $\tan Y=\frac{6}{7} ; \tan Z=\frac{7}{6}$
C. $\tan Y=\frac{7}{\sqrt{85}} ; \tan Z=\frac{6}{\sqrt{85}}$
B. $\tan Y=\frac{7}{6} ; \tan Z=\frac{6}{7}$
D. $\tan Y=\frac{\sqrt{85}}{7} ; \tan Z=\frac{\sqrt{85}}{6}$
49. In $\triangle A C E, G$ is the centroid and $B E=18$. Find $B G$ and $G E$.

A. $B G=4 \frac{1}{2}, G E=13 \frac{1}{2}$
B. $B G=12, G E=6$
C. $B G=9, G E=9$
D. $B G=6, G E=12$
50. Name the smallest angle of $\triangle A B C$. The diagram is not to scale.

A. $\angle A$
B. $\angle C$
C. $\angle B$
D. Two angles are the same size and smaller than the third.
51. Find the midpoint of $\overline{P Q}$.

A. $(2,0)$
B. $(1,1)$
C. $(1,0)$
D. $(2,1)$
52. Identify parallel segments in the diagram.

\qquad 53. Find the value of x. The diagram is not to scale.

A. 48
B. 90
C. 35
D. 70
54. Find the value of x. The diagram is not to scale.

A. 147
B. 75
C. 33
D. 162
55. Find the sum of the measures of the angles of the figure.

A. 540
B. 720
C. 900
D. 1260
56. Find the length of the midsegment. The diagram is not to scale.

A. 24
B. 84
C. 42
D. 0
57. State whether $\triangle A B C$ and $\triangle A E D$ are congruent. Justify your answer.

A. yes, by either SSS or SAS
B. yes, by SAS only
C. yes, by SSS only
D. No; there is not enough information to conclude that the triangles are congruent.

Write the equation of a line that is perpendicular to the given line and that passes through the given point.
58. $y=\frac{7}{8} x-\frac{3}{2} ;(-4,2)$
A. $y=-\frac{8}{7} x-\frac{18}{7}$
B. $y=-\frac{8}{7} x-\frac{3}{2}$
C. $y=\frac{8}{7} x-\frac{3}{2}$
D. $y=\frac{8}{7} x-\frac{18}{7}$
59. Find the value of k. The diagram is not to scale.

A. 17
B. 73
C. 107
D. 118

Tell whether the lines for each pair of equations are parallel, perpendicular, or neither.
60. $y=-\frac{1}{6} x-5$
$24 x-4 y=12$
A. parallel
B. perpendicular
C. neither
61. List the sides in order from shortest to longest. The diagram is not to scale.

A. $\overline{L K}, \overline{L J}, \overline{J K}$
B. $\overline{J K}, \overline{L J}, \overline{L K}$
C. $\overline{J K}, \overline{L K}, \overline{L J}$
D. $\overline{L K}, \overline{J K}, \overline{L J}$
62. $\overrightarrow{D F}$ bisects $\angle B D G$. Find $F G$. The diagram is not to scale.

A. 28
B. 14
C. 15
D. 19
63. What are the names of three collinear points?

A. Points A, M, and B are collinear.
C. Points C, M, and N are collinear.
B. Points C, M, and B are collinear.
D. Points P, M, and N are collinear.
64. Noam walks home from school by walking 8 blocks north and then 6 blocks east. How much shorter would his walk be if there were a direct path from the school to his house? Assume that the blocks are square.
A. 4 blocks
C. 10 blocks
B. 14 blocks
D. The distance would be the same.
65. What is a counterexample for the conjecture?

Conjecture: Any number that is divisible by 4 is also divisible by 8 .
A. 26
B. 24
C. 12
D. 40

Geometry Semester A CBE

REVIEW

Answer Section

1. ANS: A PTS: 1 DIF: L2 REF: 3-1 Properties of Parallel Lines

OBJ: 3-1.1 Identifying Angles NAT: NAEP 2005 M1f | ADP K.2.1
STA: TX TEKS G.1A | TX TEKS G.2B | TX TEKS G.3E TOP: 3-1 Example 1
KEY: corresponding angles | transversal | parallel lines
2. ANS: D PTS: 1 DIF: L2 REF: 5-5 Medians and Altitudes

OBJ: 5-5.1 To identify properties of medians and altitudes of a triangle
STA: (6)(D) TOP: 5-5 Problem 2 Identifying Medians and Altitudes
KEY: altitude of a triangle | angle bisector | perpendicular bisector | midsegment | median of a triangle
3. ANS: A PTS: 1 DIF: L3

OBJ: 2-1.1 To use inductive reasoning to make conjectures
TOP: 2-1 Problem 1 Finding and Using a Pattern
4. ANS: A PTS: $1 \quad$ DIF: L4

OBJ: 1-2.1 To find and compare lengths of segments
TOP: 1-2 Problem 2 Using the Segment Addition Postulate

REF: 2-1 Patterns and Conjectures
STA: (4)(C)| (5)(A)
KEY: pattern | inductive reasoning
REF: 1-2 Measuring Segments
STA: (2)(A)
KEY: coordinate | distance
5. ANS: A PTS: 1 DIF: L4

REF: 6-1 The Polygon Angle-Sum Theorems
OBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygon
STA: (5)(A) TOP: 6-1 Problem 4 Using the Polygon Angle-Sum Theorem
KEY: Polygon Angle-Sum Theorem
6. ANS: A
PTS: 1
DIF: L3

REF: 5-1 Midpoint and Distance in the Coordinate Plane
OBJ: 5-1.2 To find the distance between two points in the coordinate plane by deriving and using the
distance formula STA: (2)(A)| (2)(B) TOP: 5-1 Problem 5 Finding Distance
KEY: Distance Formula | coordinate plane
7. ANS: C PTS: 1 DIF: L2 REF: 8-3 The Tangent Ratio

OBJ: 8-3.1 Using Tangents in Triangles
NAT: NAEP 2005 M1m| ADP I.1.2| ADP I.4.1| ADP K.11.1| ADP K.11.2
STA: TX TEKS G.3C| TX TEKS G.3E| TX TEKS G.5D| TX TEKS G.8C
TOP: 8-3 Example 1
KEY: tangent ratio | tangent | leg opposite angle | leg adjacent to angle
8. ANS: B PTS: 1 DIF: L2

REF: 3-5 The Polygon Angle-Sum Theorems OBJ: 3-5.2 Polygon Angle Sums
NAT: NAEP 2005 G3b | NAEP 2005 G3f | ADP J.5.1 | ADP K.1.2
STA: TX TEKS G.3D | TX TEKS G.5A | TX TEKS G.5B KEY: Polygon Angle-Sum Theorem
9. ANS: C PTS: 1 DIF: L4 REF: 1-2 Measuring Segments

OBJ: 1-2.1 To find and compare lengths of segments STA: (2)(A)
TOP: 1-2 Problem 5 Using the Midpoint KEY: midpoint
10. ANS: B PTS: 1 DIF: L2 REF: 3-1 Properties of Parallel Lines

OBJ: 3-1.2 Properties of Parallel Lines NAT: NAEP 2005 M1f | ADP K.2.1
STA: TX TEKS G.3C | TX TEKS G.3E | TX TEKS G.4A TOP: 3-1 Example 5
KEY: corresponding angles | parallel lines |
11. ANS: B PTS: 1 DIF: L2

REF: 8-5 Angles of Elevation and Depression
OBJ: 8-5.1 Using Angles of Elevation and Depression
NAT: NAEP $2005 \mathrm{M} 1 \mathrm{k} \mid$ ADP I.1.2| ADP I.4.1| ADP K.11.2 STA: TX TEKS G.4A| TX TEKS G.11C
TOP: 8-5 Example 2
KEY: tangent | side length using tangent | tangent ratio

OBJ: 1-3.1 To find and compare the measures of angles
TOP: 1-3 Problem 4 Using the Angle Addition Postulate
24. ANS: A PTS: 1 DIF: L2

REF: 4-3 Triangle Congruence by ASA and AAS
OBJ: 4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS Theorem
STA: (6)(B) TOP: 4-3 Problem 4 Determining Whether Triangles Are Congruent
KEY: ASA | AAS | SAS
25. ANS: C PTS: 1 DIF: L3 REF: 2-6 Proving Angles Congruent

OBJ: 2-6.1 To prove and apply theorems about angles
TOP: 2-6 Problem 2 Applying the Vertical Angles Theorem
KEY: vertical angles | Vertical Angles Theorem
26. ANS: C PTS: 1 DIF: L2

OBJ: 2-2.1 To recognize conditional statements and their parts STA: (4)(B)|(4)(C)
TOP: 2-2 Problem 2 Writing a Conditional
KEY: hypothesis | conclusion | conditional statement
27. ANS: A PTS: 1 DIF: L3

OBJ: 5-4.1 To identify properties of perpendicular bisectors and angle bisectors
STA: (5)(A) $|(5)(\mathrm{C})|(6)(\mathrm{D}) \quad$ TOP: 5-4 Problem 2 Finding the Circumcenter of a Triangle
KEY: circumscribe \mid circumcenter of a triangle \mid point of concurrency
28. ANS: C PTS: 1 DIF: L2

REF: 3-8 Constructing Parallel and Perpendicular Lines
OBJ: 3-8.2 Constructing Perpendicular Lines
NAT: NAEP 2005 G3b | NAEP 2005 G3g | ADP K.2.1 | ADP K. 2.2
STA: TX TEKS G.7A | TX TEKS G.7B | TX TEKS G.7C TOP: 3-8 Example 3
KEY: construction \mid perpendicular lines
29. ANS: D PTS: 1 DIF: L2 REF: 2-2 Conditional Statements

OBJ: 2-2.2 To write converses, inverses, and contrapositives of conditionals
STA: (4)(B)|(4)(C)
TOP: 2-2 Problem 4 Identifying and Determining Validity of Statements
KEY: conditional statement | converse of a conditional
30. ANS: C PTS: 1 DIF: L4

REF: 4-5 Isosceles and Equilateral Triangles
OBJ: 4-5.1 To use and apply properties of isosceles and equilateral triangles
STA: (5)(A) $|(5)(\mathrm{C})|(6)(\mathrm{B}) \mid(6)(\mathrm{D}) \quad$ TOP: 4-5 Problem 5 Finding Angle Measures
KEY: Isosceles Triangle Theorem | isosceles triangle
31. ANS: A DTS: 1 DIF: L3 REF: 5-2 Midsegments of Triangles

OBJ: 5-2.1 To use properties of midsegments to solve problems STA: (6)(D)
TOP: 5-2 Problem 3 Finding Lengths KEY: midpoint | midsegment | Triangle Midsegment Theorem
32. ANS: D DTS: 1 DIF: L3 REF: 2-4 Deductive Reasoning

OBJ: 2-4.1 To use the Law of Detachment and the Law of Syllogism
STA: (6)(A) TOP: 2-4 Problem 2 Using the Law of Syllogism
KEY: deductive reasoning \mid Law of Syllogism
33. ANS: C PTS: 1 DIF: L2

REF: 3-5 The Polygon Angle-Sum Theorems
OBJ: 3-5.2 Polygon Angle Sums
NAT: NAEP 2005 G3b | NAEP 2005 G3f | ADP J.5.1 | ADP K.1.2
STA: TX TEKS G.3D | TX TEKS G.5A | TX TEKS G.5B TOP: 3-5 Example 4
KEY: exterior angle | Polygon Angle-Sum Theorem
34. ANS: D PTS: 1 DIF: L3

REF: 3-5 The Polygon Angle-Sum Theorems
NAT: NAEP 2005 G3b | NAEP 2005 G3f | ADP J.5.1 | ADP K.1. 2

STA: TX TEKS G.3D | TX TEKS G.5A | TX TEKS G.5B
KEY: pentagon | exterior angle \mid sum of angles of a polygon
35. ANS: A PTS: 1 DIF: L4 REF: 4-1 Congruent Figures

OBJ: 4-1.1 To recognize congruent figures and their corresponding sides and angles
STA: (6)(C) TOP: 4-1 Problem 2 Using Congruent Sides and Angles
KEY: congruent polygons | corresponding parts
36. ANS: B PTS: 1 DIF: L2

REF: 4-3 Triangle Congruence by ASA and AAS
OBJ: 4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS Theorem
STA: (6)(B) TOP: 4-3 Problem 1 Using ASA KEY: ASA
37. ANS: A PTS: 1 DIF: L3 REF: 4-1 Congruent Figures

OBJ: 4-1.1 To recognize congruent figures and their corresponding sides and angles
STA: (6)(C) TOP: 4-1 Problem 1 Finding Congruent Sides and Angles
KEY: congruent polygons | corresponding parts | word problem
38. ANS: C PTS: 1 DIF: L4

REF: 3-8 Constructing Parallel and Perpendicular Lines
OBJ: 3-8.2 Constructing Perpendicular Lines
NAT: NAEP 2005 G3b | NAEP 2005 G3g | ADP K.2.1 | ADP K.2.2
STA: TX TEKS G.2A KEY: construction | parallel lines
39. ANS: C PTS: 1 DIF: L3 REF: 5-7 Inequalities in One Triangle

OBJ: 5-7.1 To use inequalities involving angles and sides of triangles
STA: (5)(D)|(6)(D)
TOP: 5-7 Problem 5 Using the Triangle Inequality Theorem
KEY: Triangle Inequality Theorem
40. ANS: A PTS: 1 DIF: L3 REF: 1-1 Points, Lines, and Planes

OBJ: 1-1.1 To understand basic terms and postulates of geometry
STA: (4)(A) TOP: 1-1 Problem 1 Naming Points, Lines, and Planes
KEY: line | plane
41. ANS: D PTS: 1 DIF: L3

REF: 4-2 Triangle Congruence by SSS and SAS
OBJ: 4-2.1 To prove two triangles congruent using the SSS and SAS Postulates
STA: (5)(A)| (5)(C)| (6)(B) TOP: 4-2 Problem 2 Using SSS
KEY: SSS | reflexive property | proof
42. ANS:
$I J$ and $J K$
PTS: 1 DIF: L2 REF: 5-3 Perpendicular and Angle Bisectors
OBJ: 5-3.1 To use properties of perpendicular bisectors and angle bisectors
STA: (5)(C)| (6)(A)
TOP: 5-3 Problem 3 Using the Perpendicular Bisector Theorem
KEY: perpendicular bisector | Perpendicular Bisector Theorem
43. ANS:
$x=2$
PTS: 1 DIF: L4 REF: 5-2 Midsegments of Triangles
OBJ: 5-2.1 To use properties of midsegments to solve problems STA: (6)(D)
TOP: 5-2 Problem 3 Finding Lengths KEY: Triangle Midsegment Theorem | midsegment
44. ANS: A PTS: 1 DIF: L2

REF: 5-3 Perpendicular and Angle Bisectors
OBJ: 5-3.1 To use properties of perpendicular bisectors and angle bisectors
STA: (5)(C)| (6)(A) TOP: 5-3 Problem 5 Using the Angle Bisector Theorem
KEY: angle bisector | Converse of the Angle Bisector Theorem
45. ANS: A PTS: 1 DIF: L3 REF: 2-2 Conditional Statements

OBJ: 2-2.1 To recognize conditional statements and their parts STA: (4)(B)|(4)(C)
TOP: 2-2 Problem 1 Identifying the Hypothesis and the Conclusion
KEY: conditional statement | hypothesis | conclusion
46. ANS: C PTS: 1 DIF: L2 REF: 5-4 Bisectors in Triangles

OBJ: 5-4.1 To identify properties of perpendicular bisectors and angle bisectors
STA: (5)(A)|(5)(C)|(6)(D) TOP: 5-4 Problem 2 Finding the Circumcenter of a Triangle
KEY: circumcenter of a triangle \mid circumscribe | point of concurrency
47. ANS: B PTS: 1 DIF: L3 REF: 5-4 Bisectors in Triangles

OBJ: 5-4.1 To identify properties of perpendicular bisectors and angle bisectors
STA: (5)(A)| (5)(C)| (6)(D)
TOP: 5-4 Problem 4 Identifying and Using the Incenter of a Triangle
KEY: angle bisector | incenter of a triangle | point of concurrency
48. ANS: B PTS: 1 DIF: L3 REF: 8-3 The Tangent Ratio

OBJ: 8-3.1 Using Tangents in Triangles
NAT: NAEP 2005 M1m| ADP I.1.2| ADP I.4.1| ADP K.11.1| ADP K.11.2
STA: TX TEKS G.9B| TX TEKS G.11C| TX TEKS G.3B| TX TEKS G.3D| TX TEKS G.5B
TOP: 8-3 Example 1
KEY: leg adjacent to angle | leg opposite angle | tangent | tangent ratio
49. ANS: D PTS: 1 DIF: L3 REF: 5-5 Medians and Altitudes

OBJ: 5-5.1 To identify properties of medians and altitudes of a triangle
STA: (6)(D) TOP: 5-5 Problem 1 Finding the Length of a Median
KEY: centroid of a triangle | median of a triangle
50. ANS: C PTS: 1 DIF: L3 REF: 5-7 Inequalities in One Triangle

OBJ: 5-7.1 To use inequalities involving angles and sides of triangles
STA: (5)(D) (6)(D) TOP: 5-7 Problem 2 Using Theorem 5-10
51. ANS: A PTS: 1 DIF: L2

REF: 5-1 Midpoint and Distance in the Coordinate Plane
OBJ: 5-1.1 To find the midpoint of a segment by deriving and using the midpoint formula
STA: (2)(A)|(2)(B) TOP: 5-1 Problem 2 Finding the Midpoint
KEY: coordinate plane | Midpoint Formula
52. ANS:
$\overline{B D}\|\overline{A E}, \overline{D F}\| \overline{A C}, \overline{B F} \| \overline{C E}$
PTS: 1 DIF: L2 REF: 5-2 Midsegments of Triangles
OBJ: 5-2.1 To use properties of midsegments to solve problems STA: (6)(D)
TOP: 5-2 Problem 2 Identifying Parallel Segments
KEY: midsegment | parallel lines | Triangle Midsegment Theorem
53. ANS: D PTS: 1 DIF: L3 REF: 5-2 Midsegments of Triangles

OBJ: 5-2.1 To use properties of midsegments to solve problems STA: (6)(D)
TOP: 5-2 Problem 3 Finding Lengths KEY: midsegment | Triangle Midsegment Theorem
54. ANS: C PTS: 1 DIF: L2

REF: 3-4 Parallel Lines and the Triangle Angle-Sum Theorem
OBJ: 3-4.2 Using Exterior Angles of Triangles
NAT: NAEP 2005 G3b | NAEP 2005 G3f | ADP J.5.1 | ADP K.1.2
STA: TX TEKS G.3C | TX TEKS G.3E | TX TEKS G.4A TOP: 3-4 Example 3
KEY: triangle | sum of angles of a triangle
55. ANS: A PTS: 1 DIF: L2

REF: 6-1 The Polygon Angle-Sum Theorems
OBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygon

STA: (5)(A) TOP: 6-1 Problem 2 Finding a Polygon Angle Sum
KEY: Polygon Angle-Sum Theorem
56. ANS: C PTS: 1 DIF: L4 REF: 5-2 Midsegments of Triangles

OBJ: 5-2.1 To use properties of midsegments to solve problems STA: (6)(D)
TOP: 5-2 Problem 3 Finding Lengths KEY: midsegment | Triangle Midsegment Theorem
57. ANS: A PTS: 1 DIF: L3

REF: 4-2 Triangle Congruence by SSS and SAS
OBJ: 4-2.1 To prove two triangles congruent using the SSS and SAS Postulates
STA: (5)(A)| (5)(C)| (6)(B)
TOP: 4-2 Problem 4 Identifying Congruent Triangles
KEY: SSS|SAS | reasoning
58. ANS: A PTS: 1 DIF: L4 REF: 3-6 Parallel and Perpendicular

Lines
OBJ: 3-6.2 To write equations of parallel lines and perpendicular lines
STA: (2)(B)| (2)(C)| (2)(E)| (2)(F)| (3)(A)
TOP: 3-6 Problem 3 Writing an Equation of a Perpendicular Line
KEY: perpendicular lines
59. ANS: B PTS: 1 DIF: L2

REF: 3-4 Parallel Lines and the Triangle Angle-Sum Theorem
OBJ: 3-4.1 Finding Angle Measures in Triangles
NAT: NAEP 2005 G3b | NAEP 2005 G3f | ADP J.5.1 | ADP K.1.2
STA: TX TEKS G.3E | TX TEKS G.4A TOP: 3-4 Example 1
KEY: triangle | sum of angles of a triangle
60. ANS: B PTS: 1 DIF: L3 REF: 3-6 Parallel and Perpendicular

Lines
OBJ: 3-6.1 To determine whether lines are parallel, perpendicular, or neither
STA: (2)(B)| (2)(C)|(2)(E)|(2)(F)|(3)(A) TOP: 3-6 Problem 2 Classifying Lines
KEY: perpendicular lines \mid parallel lines \mid compare properties of two functions
61. ANS: A PTS: 1 DIF: L3 REF: 5-7 Inequalities in One Triangle

OBJ: 5-7.1 To use inequalities involving angles and sides of triangles
STA: (5)(D)| (6)(D) TOP: 5-7 Problem 3 Using Theorem 5-11
62. ANS: B PTS: 1 DIF: L3

REF: 5-3 Perpendicular and Angle Bisectors
OBJ: 5-3.1 To use properties of perpendicular bisectors and angle bisectors
STA: (5)(C)| (6)(A) TOP: 5-3 Problem 5 Using the Angle Bisector Theorem
KEY: angle bisector | Angle Bisector Theorem
63. ANS: D PTS: 1 DIF: L3 REF: 1-1 Points, Lines, and Planes

OBJ: 1-1.1 To understand basic terms and postulates of geometry
STA: (4)(A) TOP: 1-1 Problem 1 Naming Points, Lines, and Planes
KEY: collinear | point
64. ANS: A PTS: 1 DIF: L3

REF: 5-1 Midpoint and Distance in the Coordinate Plane
OBJ: 5-1.2 To find the distance between two points in the coordinate plane by deriving and using the distance formula STA: (2)(A)|(2)(B) TOP: 5-1 Problem 6 Finding Distance
KEY: coordinate plane | Distance Formula | word problem | problem solving
65. ANS: C PTS: 1 DIF: L2 REF: 2-1 Patterns and Conjectures

OBJ: 2-1.1 To use inductive reasoning to make conjectures \quad STA: (4)(C)|(5)(A)
TOP: 2-1 Problem 5 Verifying a Conjecture Is False Using a Counterexample
KEY: conjecture | counterexample

