Sharyland ISD Study Guide

Geometry Semester A

Student Name: Student ID:

Geometry Semester A CBE

1. Which angles are corresponding angles?

2. What is the name of the segment inside the large triangle?

A. perpendicular bisectorC. medianB. angle bisectorD. altitude

3. Based on the pattern, what are the next two terms of the sequence?

9, $\frac{9}{5}$, $\frac{9}{25}$, $\frac{9}{125}$, $\frac{9}{625}$, ...

A.	9	9	С.	9	9
	3125'	15625		630'	3130
B.	9	9	D.	_9	9
	3125'	3130		630'	635

4. If EF = 3x - 5, FG = 4x - 9, and EG = 28, find the values of x, EF, and FG. The drawing is not to scale.

A.
$$x = 6, EF = 13, FG = 15$$
C. $x = 4, EF = 7, FG = 7$ B. $x = 6, EF = 23, FG = 33$ D. $x = 4, EF = 13, FG = 15$

5. Find the value of *x*. The diagram is not to scale.

7. Write the tangent ratios for $\angle P$ and $\angle Q$.

Not drawn to scale

A.
$$\tan P = \frac{29}{20}$$
; $\tan Q = \frac{20}{29}$
B. $\tan P = \frac{29}{21}$; $\tan Q = \frac{21}{29}$
C. $\tan P = \frac{20}{21}$; $\tan Q = \frac{21}{20}$
D. $\tan P = \frac{21}{20}$; $\tan Q = \frac{20}{21}$

8. The Polygon Angle-Sum Theorem states: The sum of the measures of the angles of an *n*-gon is _____.

A.
$$(n-1)180$$
 B. $(n-2)180$ C. $\frac{n-2}{180}$ D. $\frac{180}{n-1}$

9. If *T* is the midpoint of \overline{SU} , what are *ST*, *TU*, and *SU*?

$$\begin{array}{cccc} S & T & U \\ \bullet & \bullet & \\ 6x & 3x+27 \end{array}$$

A.
$$ST = 9, TU = 54, and SU = 108$$
C. $ST = 54, TU = 54, and SU = 108$ B. $ST = 18, TU = 18, and SU = 36$ D. $ST = 70, TU = 70, and SU = 140$

13. Supply the missing reasons to complete the proof. **Given:** $\angle Q \cong \angle T$ and $\overline{QR} \cong \overline{TR}$ **Prove:** $\overline{PR} \cong \overline{SR}$

	U .	
AAS; Corresp. parts of $\cong \Delta$ are \cong .	D.	SAS; Corresp. parts of $\cong \Delta$ are \cong .

14. Two sides of a triangle have lengths 10 and 15. What must be true about the length of the third side?

A. less than 15 B. less than 10 C. less than 25 D. less than 5

_ 15. What additional information will allow you to prove the triangles congruent by the HL Theorem?

B. $\angle A \cong \angle E$

C. $\underline{m \angle BCE} = 90$ D. $\overline{AC} \cong \overline{BD}$

B.

16. Use the Law of Detachment to draw a conclusion from the two given statements. If not possible, write *not possible*.

I can go to the concert if I can afford to buy a ticket. I can go to the concert.

- A. If I can go to the concert, I can afford the ticket.
- B. I cannot afford to buy the ticket.
- C. I can afford to buy a ticket.
- D. not possible
- 17. A triangular side of the Transamerica Pyramid Building in San Francisco, California, is 149 feet at its base. If the distance from a base corner of the building to its peak is 859 feet, how wide is the triangle halfway to the top?

Transamerica Pyramid

18. Which choice shows a true conditional, with the hypothesis and conclusion identified correctly?

- A. Yesterday was Monday if tomorrow is Thursday. Hypothesis: Tomorrow is Thursday. Conclusion: Yesterday was Monday.
- B. Yesterday was Tuesday if tomorrow is Thursday. Hypothesis: Tomorrow is Thursday. Conclusion: Yesterday was Tuesday.
- C. If tomorrow is Thursday, then yesterday was Tuesday. Hypothesis: Yesterday was Tuesday. Conclusion: Tomorrow is Thursday.
- D. If tomorrow is Thursday, then yesterday was Tuesday. Hypothesis: Yesterday was Tuesday. Conclusion: Tomorrow is not Thursday.

Write an equation for the line that is parallel to the given line and passes through the given point.

19. y = 5x + 8; (2, 16)

A.
$$y = -\frac{1}{5}x - 6$$

B. $y = 5x - 78$
C. $y = \frac{1}{5}x + 6$
D. $y = 5x + 6$

20. Find the values of *x* and *y*.

21. How many sides does a regular polygon have if each exterior angle measures 20?

A. 21 sides B. 20 sides C. 18 sides

- 22. What is the negation of this statement? Miguel has three cats.
 - A. Miguel does not like cats.
 - B. Miguel has no cats.
 - C. The cat has three owners.
 - D. Miguel does not have three cats.
- 23. If $m \angle AOC = 67^\circ$, $m \angle BOC = 2x + 10$, and $m \angle AOB = 4x 15$, find the degree measure of $\angle BOC$ and $\angle AOB$. The diagram is not to scale.

A. $m \angle BOC = 24^\circ$; $m \angle AOB = 43^\circ$ B. $m \angle BOC = 34^\circ$; $m \angle AOB = 33^\circ$

C. $m \angle BOC = 33^{\circ}; m \angle AOB = 34^{\circ}$

D. 17 sides

D. $m \angle BOC = 43^{\circ}$; $m \angle AOB = 24^{\circ}$

24. Name the theorem or postulate that lets you immediately conclude $\triangle ABD \cong \triangle CBD$.

25. What is the value of x?

26. Write this statement as a conditional in *if-then* form:

All triangles have three sides.

- A. If a figure is a triangle, then all triangles have three sides.
- B. If a figure has three sides, then it is not a triangle.
- C. If a figure is a triangle, then it has three sides.
- D. If a triangle has three sides, then all triangles have three sides.

27. Find the circumcenter of the triangle.

0 R S C. A. K K L L М B. D. \bar{K} K L М L

29. What is the converse of the following conditional?

If a point is in the fourth quadrant, then its coordinates are negative.

- A. If the coordinates of a point are not negative, then the point is not in the fourth quadrant.
- B. If a point is in the fourth quadrant, then its coordinates are negative.
- C. If a point is not in the fourth quadrant, then the coordinates of the point are not negative.
- D. If the coordinates of a point are negative, then the point is in the fourth quadrant.

30. Find the value of *x*. The diagram is not to scale.

C. x = 21

D. none of these

31. Find the value of x.

32. Use the Law of Syllogism to draw a conclusion from the two given statements.

If you exercise regularly, then you have a healthy body. If you have a healthy body, then you have more energy.

- A. You have a healthy body.
- B. If you do not have more energy, then you do not exercise regularly.
- C. You have more energy.
- D. If you exercise regularly, then you have more energy.
- _____ 33. Find the missing angle measures. The diagram is not to scale.

A.	x = 124, y = 125	С.	x = 114, y = 56
B.	x = 56, y = 124	D.	x = 56, y = 114

34. Find $m \angle A$. The diagram is not to scale.

38. Which diagram suggests a correct construction of a line parallel to given line *w* and passing through given point *K*?

39. Which three lengths could be the lengths of the sides of a triangle?

A. 21 cm, 7 cm, 6 cm B. 12 cm, 5 cm, 17 cm

- C. 10 cm, 15 cm, 24 cm
- D. 9 cm, 22 cm, 11 cm

40. Name the line and plane shown in the diagram.

41. Justify the last two steps of the proof. Given: $\overline{RS} \cong \overline{UT}$ and $\overline{RT} \cong \overline{US}$ Prove: $\Delta RST \cong \Delta UTS$

- A. Reflexive Property of \cong ; SAS
- B. Symmetric Property of \cong ; SSS
- C. Symmetric Property of ≅; SAS
- D. Reflexive Property of \cong ; SSS
- 42. Given: \overrightarrow{AB} is the perpendicular bisector of *IK*. Name two lengths that are equal.

43. *B* is the midpoint of \overline{AC} and *D* is the midpoint of \overline{CE} . Solve for *x*, given BD = 5x + 3 and AE = 4x + 18.

44. *Q* is equidistant from the sides of $\angle TSR$. Find the value of *x*. The diagram is not to scale.

45. Identify the hypothesis and conclusion of this conditional statement:

If two lines intersect at right angles, then the two lines are perpendicular.

- A. Hypothesis: Two lines intersect at right angles. Conclusion: The two lines are perpendicular.
- B. Hypothesis: The two lines are not perpendicular. Conclusion: Two lines intersect at right angles.
- C. Hypothesis: The two lines are perpendicular. Conclusion: Two lines intersect at right angles.
- D. Hypothesis: Two lines intersect at right angles. Conclusion: The two lines are not perpendicular.
- 46. Which diagram shows a point *P* an equal distance from points *A*, *B*, and *C*? A. C.

В.

D.

47. Name the point of concurrency of the angle bisectors.

Not drawn to scale

A.
$$\tan Y = \frac{6}{7}$$
; $\tan Z = \frac{7}{6}$
B. $\tan Y = \frac{7}{6}$; $\tan Z = \frac{6}{7}$
C. $\tan Y = \frac{7}{\sqrt{85}}$; $\tan Z = \frac{6}{\sqrt{85}}$
D. $\tan Y = \frac{\sqrt{85}}{7}$; $\tan Z = \frac{\sqrt{85}}{6}$

49. In $\triangle ACE$, G is the centroid and BE = 18. Find BG and GE.

50. Name the smallest angle of $\triangle ABC$. The diagram is not to scale.

- A. $\angle A$ B. $\angle C$ C. $\angle B$
- D. Two angles are the same size and smaller than the third.

52. Identify parallel segments in the diagram.

53. Find the value of x. The diagram is not to scale.

54. Find the value of x. The diagram is not to scale.

55. Find the sum of the measures of the angles of the figure.

57. State whether $\triangle ABC$ and $\triangle AED$ are congruent. Justify your answer.

- A. yes, by either SSS or SAS
- B. yes, by SAS only
- C. yes, by SSS only
- D. No; there is not enough information to conclude that the triangles are congruent.

Write the equation of a line that is perpendicular to the given line and that passes through the given point.

$$58. \quad y = \frac{7}{8}x - \frac{3}{2}; (-4, 2)$$

$$A. \quad y = -\frac{8}{7}x - \frac{18}{7}$$

$$B. \quad y = -\frac{8}{7}x - \frac{3}{2}$$

$$C. \quad y = \frac{8}{7}x - \frac{3}{2}$$

$$D. \quad y = \frac{8}{7}x - \frac{18}{7}$$

59. Find the value of k. The diagram is not to scale.

Tell whether the lines for each pair of equations are *parallel*, *perpendicular*, or *neither*.

61. List the sides in order from shortest to longest. The diagram is not to scale.

A. 28 B. 14 C. 15 D. 19

63. What are the names of three collinear points?

- A. Points *A*, *M*, and *B* are collinear.
- B. Points *C*, *M*, and *B* are collinear.
- C. Points *C*, *M*, and *N* are collinear.
- D. Points P, M, and N are collinear.
- 64. Noam walks home from school by walking 8 blocks north and then 6 blocks east. How much shorter would his walk be if there were a direct path from the school to his house? Assume that the blocks are square.
 - A. 4 blocksB. 14 blocks

- C. 10 blocks
- D. The distance would be the same.
- 65. What is a counterexample for the conjecture?

Conjecture: Any number that is divisible by 4 is also divisible by 8.

A. 26 B. 24 C. 12 D. 40

REVIEW

Geometry Semester A CBE Answer Section

1.	ANS:	A PTS: 1 DI	IF: 1	L2	REF:	3-1 Properties of Parallel Lines
	OBJ:	3-1.1 Identifying Angles NA	AT: 1	NAEP 2005 M	lf AE	DP K.2.1
	STA:	TX TEKS G.1A TX TEKS G.2B TX	TEK	S G.3E	TOP:	3-1 Example 1
	KEY:	corresponding angles transversal para	allel li	ines		
2.	ANS:	D PTS: 1 D	IF: 1	L2	REF:	5-5 Medians and Altitudes
	OBJ:	5-5.1 To identify properties of medians	and a	altitudes of a tr	iangle	
	STA:	(6)(D) TOP: 5-5 Problem 2 Id	entify	ving Medians a	nd Alti	tudes
	KEY:	altitude of a triangle angle bisector pe	erpen	dicular bisector	r mids	egment median of a triangle
3.	ANS:	A PTS: 1 DI	IF: 1	L3	REF:	2-1 Patterns and Conjectures
	OBJ:	2-1.1 To use inductive reasoning to mal	ke coi	njectures	STA:	(4)(C) (5)(A)
	TOP:	2-1 Problem 1 Finding and Using a Patt	tern	-	KEY:	pattern inductive reasoning
4.	ANS:	A PTS: 1 DI	IF: 1	L4	REF:	1-2 Measuring Segments
	OBJ:	1-2.1 To find and compare lengths of se	egmei	nts	STA:	(2)(A)
	TOP:	1-2 Problem 2 Using the Segment Addi	ition I	Postulate	KEY:	coordinate distance
5.	ANS:	A PTS: 1 DI	IF: 1	L4		
	REF:	6-1 The Polygon Angle-Sum Theorems	5			
	OBJ:	6-1.1 To find the sum of the measures of	of the	interior angles	of a po	olygon
	STA:	(5)(A) TOP: 6-1 Problem 4 Us	sing tl	he Polygon An	gle-Su	m Theorem
	KEY:	Polygon Angle-Sum Theorem				
6.	ANS:	A PTS: 1 DI	IF: 1	L3		
	REF:	5-1 Midpoint and Distance in the Coord	linate	Plane		
	OBJ:	5-1.2 To find the distance between two	point	s in the coordin	nate pla	ane by deriving and using the
	distance	ce formula STA: $(2)(A) (2)(B)$			TOP:	5-1 Problem 5 Finding Distance
	KEY:	Distance Formula coordinate plane				
7.	ANS:	C PTS: 1 DI	IF:	L2	REF:	8-3 The Tangent Ratio
	OBJ:	8-3.1 Using Tangents in Triangles				_
	NAT:	NAEP 2005 M1m ADP I.1.2 ADP I.4.	.1 AL	OP K.11.1 AD	P K.11	.2
	STA:	TX TEKS G.3C TX TEKS G.3E TX T	EKS	G.5D TX TEI	KS G.8	C
	IOP:	8-3 Example 1	1.1.			
0	KEY:	tangent ratio tangent leg opposite ang	gie ie	eg adjacent to a	ingle	
8.	ANS:	B PIS: I DI		L2	ODI.	2.5.2 Delanen Angle Sume
	KEF: NAT:	S-5 The Polygon Angle-Sum Theorems	יז מח		ОБJ: 2	5-5.2 Polygon Angle Sums
	\mathbf{NAI} .	TX TEKS G 3D TX TEKS G 5A TX	DF J TFK	S.1 ADF K.1.	Z Kev:	Polygon Angle-Sum Theorem
0	ANS.	$C \qquad PTS \cdot 1 \qquad D$	IE ·	со.5.5.5 Г Л	RET.	1.2 Measuring Segments
9.	ORI-	1-2 1 To find and compare lengths of se	annei	L T	STA.	$(2)(\Delta)$
	TOP	1-2 Problem 5 Using the Midpoint K	FV· 1	midnoint	SIA.	$(2)(\Lambda)$
10	ANS.	$\begin{array}{ccc} \mathbf{R} & \mathbf{PTS} \cdot 1 & \mathbf{D} \end{array}$		1 2	BEE	3-1 Properties of Parallel Lines
10.	ORI-	3-1 2 Properties of Parallel Lines N		LZ NAFP 2005 M	ΊΓΙ ΔΓ	P K 2 1
	STA.	TX TEKS G 3C TX TEKS G 3E TX	TFK	SG4A	TOP	3-1 Example 5
	KEY.	corresponding angles parallel lines	1 1/11	5 G. M	101.	5 T Example 5
11	ANS.	$\begin{array}{c} \text{B} & \text{PTS} \cdot 1 & \text{D} \end{array}$	IF• 1	1.2		
	REF.	8-5 Angles of Elevation and Depression	n i			
	OBI	8-5.1 Using Angles of Elevation and Depression	enress	sion		
	NAT:	NAEP 2005 M1k ADP I.1.2 ADP I.4.1	1 AD	P K.11.2	STA:	TX TEKS G.4A TX TEKS G.11C
	TOP:	8-5 Example 2	EY: 1	tangent side le	ength u	sing tangent tangent ratio
		-			~	

12.	ANS:	C PTS: 1	DIF:	L2		
	REF:	8-5 Angles of Elevation and Depre	ession			
	OBJ:	8-5.1 Using Angles of Elevation at	nd Depre	ssion		
	NAT:	NAEP 2005 M1k ADP I.1.2 ADF	PI.4.1 A	DP K.11.2	STA:	TX TEKS G.4A TX TEKS G.11C
	TOP:	8-5 Example 2	KEY:	cosine side le	ength u	sing since and cosine cosine ratio
13.	ANS:	A PTS: 1	DIF:	L3	-	
	REF:	4-4 Using Corresponding Parts of	Congrue	nt Triangles		
	OBJ:	4-4.1 To use triangle congruence a	nd corre	sponding parts of	of cong	ruent triangles to prove that parts of
	two tri	angles are congruent	STA:	(6)(B)	8	
	TOP:	4-4 Problem 1 Proving Parts of Tr	iangles C	Congruent		
	KEY:	ASA corresponding parts proof	two-col	umn proof		
14	ANS	$C = PTS \cdot 1$	DIF	L3	REF	5-7 Inequalities in One Triangle
1 1.	ORI-	5-7 1 To use inequalities involving	angles a	nd sides of tria	ngles	5 7 mequanties in one mangle
	STA-	(5)(D) (6)(D)	TOP.	5_7 Problem 6	Findin	a Possible Side Lengths
	KEV.	Triangle Inequality Theorem	101.	<i>J</i> -7 11001cm 0) I IIIGIII	g i ossible Side Lenguis
15	ANG.	$\frac{1}{1}$	DIE.	т 2	DEE.	4.6 Consumer in Dight Triangles
15.	ANS:	A PIS: 1	DIF:	L3 in a tha Hamatan	KEF:	4-6 Congruence in Right Triangles
	ODJ:	4-0.1 To prove right triangles cong	2 W		iuse-Le	
	SIA:	(6)(B) IOP: 4-6 Problem	2 writir	ig a Proof Using	g the H	LIneorem
10	KEY:	nypotenuse HL Theorem right th	nangle 1	easoning	DEE	
16.	ANS:	D PIS: 1	DIF:	L3	KEF:	2-4 Deductive Reasoning
	OBJ:	2-4.1 To use the Law of Detachme	ent and th	e Law of Syllo	gism	
	STA:	$(6)(A) \qquad \text{IOP: } 2-4 \text{ Problem}$	I Using	the Law of Det	tachme	nt
	KEY:	deductive reasoning Law of Deta	chment			
17.	ANS:	D PTS: 1	DIF:	L3	REF:	5-2 Midsegments of Triangles
	OBJ:	5-2.1 To use properties of midsegr	nents to	solve problems	STA:	(6)(D)
	TOP:	5-2 Problem 4 Using a Midsegmer	nt of a Tr	iangle		
	KEY:	midsegment Triangle Midsegmen	t Theore	m word proble	em pro	blem solving
18.	ANS:	B PTS: 1	DIF:	L3	REF:	2-2 Conditional Statements
	OBJ:	2-2.1 To recognize conditional star	tements a	and their parts	STA:	(4)(B) (4)(C)
	TOP:	2-2 Problem 1 Identifying the Hyp	othesis a	nd the Conclusi	ion	
	KEY:	conditional statement hypothesis	conclus	ion		
19.	ANS:	D PTS: 1	DIF:	L2	REF:	3-6 Parallel and Perpendicular
	Lines					
	OBJ:	3-6.2 To write equations of paralle	l lines ar	nd perpendicula	r lines	
	STA:	(2)(B) (2)(C) (2)(E) (2)(F) (3)(A)) TOP:	3-6 Problem 1	Writin	g an Equation of a Parallel Line
	KEY:	parallel lines				
20.	ANS:	C PTS: 1	DIF:	L3		
	REF:	4-5 Isosceles and Equilateral Trian	gles			
	OBJ:	4-5.1 To use and apply properties	of isosce	les and equilate	ral tria	ngles
	STA:	(5)(A) (5)(C) (6)(B) (6)(D)	TOP:	4-5 Problem 4	Using	Algebra
	KEY:	angle bisector isosceles triangle			U	C
21.	ANS:	C PTS: 1	DIF:	L2		
	REF:	3-5 The Polygon Angle-Sum Theo	rems		OBJ:	3-5.2 Polygon Angle Sums
	NAT:	NAEP 2005 G3b NAEP 2005 G3	f ADP .	I.5.1 ADP K.1	.2	
	STA:	TX TEKS G.3D TX TEKS G.5A	TX TE	KS G.5B	TOP:	3-5 Example 3
	KEY:	sum of angles of a polygon	1		1011	e e znanpre e
22	ANS	$D = PTS \cdot 1$	DIE	13	REF	5-6 Indirect Proof
<i></i> .	ORI.	5-6 1 To use indirect reasoning to	write nro	ofs	STA.	(6)(D)
	TOP	5-6 Problem 1 Writing the First St	en of an	Indirect Proof	KFV.	negation
22	ANC.	$D = DTC \cdot 1$		T 2	DEE.	1.2 Magguring Angles
<i>∠</i> 3.	ANS:	D F13. 1	DIF.	LJ	KEF.	1-5 measuring Angles

	OBJ:	1-3.1 To find and compare the measures of angles	STA:	(6)(A)
	TOP:	1-3 Problem 4 Using the Angle Addition Postulate	KEY:	Angle Addition Postulate
24.	ANS:	A PTS: 1 DIF: L2		
	REF:	4-3 Triangle Congruence by ASA and AAS		
	OBJ:	4-3.1 To prove two triangles congruent using the ASA Pos	stulate a	and the AAS Theorem
	STA:	(6)(B) TOP: 4-3 Problem 4 Determining Whether	r Triang	gles Are Congruent
	KEY:	ASA AAS SAS		
25.	ANS:	C PTS: 1 DIF: L3	REF:	2-6 Proving Angles Congruent
	OBJ:	2-6.1 To prove and apply theorems about angles	STA:	(6)(A)
	TOP:	2-6 Problem 2 Applying the Vertical Angles Theorem		
	KEY:	vertical angles Vertical Angles Theorem		
26.	ANS:	C PTS: 1 DIF: L2	REF:	2-2 Conditional Statements
	OBJ:	2-2.1 To recognize conditional statements and their parts	STA:	(4)(B) (4)(C)
	TOP:	2-2 Problem 2 Writing a Conditional		
	KEY:	hypothesis conclusion conditional statement		
27.	ANS:	A PTS: 1 DIF: L3	REF:	5-4 Bisectors in Triangles
	OBJ:	5-4.1 To identify properties of perpendicular bisectors and	angle l	pisectors
	STA:	(5)(A) (5)(C) (6)(D) TOP: 5-4 Problem 2	2 Findir	ig the Circumcenter of a Triangle
	KEY:	circumscribe circumcenter of a triangle point of concurr	ency	
28.	ANS:	C PTS: 1 DIF: L2		
	REF:	3-8 Constructing Parallel and Perpendicular Lines		
	OBJ:	3-8.2 Constructing Perpendicular Lines		
	NAT:	NAEP 2005 G3b NAEP 2005 G3g ADP K.2.1 ADP K.	.2.2	
	STA:	TX TEKS G.7A TX TEKS G.7B TX TEKS G.7C	TOP:	3-8 Example 3
	KEY:	construction perpendicular lines		
29.	ANS:	D PTS: 1 DIF: L2	REF:	2-2 Conditional Statements
	OBJ:	2-2.2 To write converses, inverses, and contrapositives of	conditio	onals
	STA:	(4)(B) (4)(C)		
	TOP:	2-2 Problem 4 Identifying and Determining Validity of Sta	atement	S
•	KEY:	conditional statement converse of a conditional		
30.	ANS:	C PTS: 1 DIF: L4		
	KEF:	4-5 Isosceles and Equilateral Triangles	1	1
	OBJ:	4-5.1 To use and apply properties of isosceles and equilate $(5)(A) = (5)(A) = (2)(A) = (2)(A)$	ral triai	ngles
	SIA:	(5)(A) (5)(C) (6)(B) (6)(D) 10P: 4-5 Problem 5	Findin	ig Angle Measures
2.1	KEY:	Isosceles Irlangie Theorem isosceles triangle	DEE	
31.	ANS:	A PIS: 1 DIF: L3	KEF:	5-2 Midsegments of Triangles
	OBJ:	5-2.1 To use properties of midsegments to solve problems	51A:	(0)(D)
22	TOP:	5-2 Problem 5 Finding Lengths KEY: midpoint mid	usegme	nt Triangle Midsegment Theorem
32.			DEE	
	ANS:	D PTS: 1 DIF: L3	REF:	2-4 Deductive Reasoning
	ANS: OBJ:	D PTS: 1 DIF: L3 2-4.1 To use the Law of Detachment and the Law of Syllo (6)(A) TOP: 2.4 Problem 2 Using the Law of Syllo	REF: gism	2-4 Deductive Reasoning
	ANS: OBJ: STA:	D PTS: 1 DIF: L3 2-4.1 To use the Law of Detachment and the Law of Syllo (6)(A) TOP: 2-4 Problem 2 Using the Law of Syl deductive recenting Law of Syllogism	REF: gism llogism	2-4 Deductive Reasoning
22	ANS: OBJ: STA: KEY:	D PTS: 1 DIF: L3 2-4.1 To use the Law of Detachment and the Law of Syllo (6)(A) TOP: 2-4 Problem 2 Using the Law of Syl deductive reasoning Law of Syllogism	REF: gism llogism	2-4 Deductive Reasoning
33.	ANS: OBJ: STA: KEY: ANS:	D PTS: 1 DIF: L3 2-4.1 To use the Law of Detachment and the Law of Syllo (6)(A) TOP: 2-4 Problem 2 Using the Law of Syl deductive reasoning Law of Syllogism C PTS: 1 DIF: L2 2.5 The Deluger Angle Sum Theorems	REF: gism llogism	2-4 Deductive Reasoning
33.	ANS: OBJ: STA: KEY: ANS: REF: NAT:	DPTS: 1DIF: L32-4.1 To use the Law of Detachment and the Law of Syllo(6)(A)TOP: 2-4 Problem 2 Using the Law of Syldeductive reasoning Law of SyllogismCPTS: 1DIF: L23-5 The Polygon Angle-Sum TheoremsNAEP 2005 C2b NAEP 2005 C2f ADP L5 1 ADP K 1	REF: gism llogism OBJ:	2-4 Deductive Reasoning3-5.2 Polygon Angle Sums
33.	ANS: OBJ: STA: KEY: ANS: REF: NAT: STA:	D PTS: 1 DIF: L3 2-4.1 To use the Law of Detachment and the Law of Syllo (6)(A) TOP: 2-4 Problem 2 Using the Law of Syllo deductive reasoning Law of Syllogism C PTS: 1 DIF: L2 3-5 The Polygon Angle-Sum Theorems NAEP 2005 G3b NAEP 2005 G3f ADP J.5.1 ADP K.1	REF: gism llogism OBJ: .2	2-4 Deductive Reasoning3-5.2 Polygon Angle Sums2 5 Example 4
33.	ANS: OBJ: STA: KEY: ANS: REF: NAT: STA: KEY:	D PTS: 1 DIF: L3 2-4.1 To use the Law of Detachment and the Law of Syllo (6)(A) TOP: 2-4 Problem 2 Using the Law of Syllo deductive reasoning Law of Syllogism C PTS: 1 DIF: L2 3-5 The Polygon Angle-Sum Theorems NAEP 2005 G3b NAEP 2005 G3f ADP J.5.1 ADP K.1 TX TEKS G.3D TX TEKS G.5A TX TEKS G.5B exterior angle Polygon Angle Sum Theorem	REF: gism llogism OBJ: .2 TOP:	2-4 Deductive Reasoning3-5.2 Polygon Angle Sums3-5 Example 4
33.	ANS: OBJ: STA: KEY: ANS: REF: NAT: STA: KEY: ANS:	D PTS: 1 DIF: L3 2-4.1 To use the Law of Detachment and the Law of Syllo (6)(A) TOP: 2-4 Problem 2 Using the Law of Syl deductive reasoning Law of Syllogism C PTS: 1 DIF: L2 3-5 The Polygon Angle-Sum Theorems NAEP 2005 G3b NAEP 2005 G3f ADP J.5.1 ADP K.1 TX TEKS G.3D TX TEKS G.5A TX TEKS G.5B exterior angle Polygon Angle-Sum Theorem D PTS: 1 DIF: L2	REF: gism llogism OBJ: .2 TOP:	2-4 Deductive Reasoning3-5.2 Polygon Angle Sums3-5 Example 4
33.34.	ANS: OBJ: STA: KEY: ANS: REF: NAT: STA: KEY: ANS: DEE:	DPTS: 1DIF: L32-4.1 To use the Law of Detachment and the Law of Syllo(6)(A)TOP: 2-4 Problem 2 Using the Law of Syllodeductive reasoning Law of SyllogismCPTS: 1DIF: L23-5 The Polygon Angle-Sum TheoremsNAEP 2005 G3b NAEP 2005 G3f ADP J.5.1 ADP K.1TX TEKS G.3D TX TEKS G.5A TX TEKS G.5Bexterior angle Polygon Angle-Sum TheoremDPTS: 1DIF: L33 5 The Polygon Angle Sum Theorem	REF: gism llogism OBJ: .2 TOP:	 2-4 Deductive Reasoning 3-5.2 Polygon Angle Sums 3-5 Example 4 3-5 2 Polygon Angle Sums
33.34.	ANS: OBJ: STA: KEY: ANS: REF: NAT: STA: KEY: ANS: REF: NAT:	DPTS: 1DIF: L32-4.1 To use the Law of Detachment and the Law of Syllo(6)(A)TOP: 2-4 Problem 2 Using the Law of Syllodeductive reasoning Law of SyllogismCPTS: 1J-5 The Polygon Angle-Sum TheoremsNAEP 2005 G3b NAEP 2005 G3f ADP J.5.1 ADP K.1TX TEKS G.3D TX TEKS G.5A TX TEKS G.5Bexterior angle Polygon Angle-Sum TheoremDPTS: 1DPTS: 1D	REF: gism llogism OBJ: .2 TOP: OBJ: 2	 2-4 Deductive Reasoning 3-5.2 Polygon Angle Sums 3-5 Example 4 3-5.2 Polygon Angle Sums

	STA:	TX TEKS G.3D TX TEKS G.5A TX TEKS G.5B
	KEY:	pentagon exterior angle sum of angles of a polygon
35.	ANS:	A PTS: 1 DIF: L4 REF: 4-1 Congruent Figures
	OBJ:	4-1.1 To recognize congruent figures and their corresponding sides and angles
	STA:	(6)(C) TOP: 4-1 Problem 2 Using Congruent Sides and Angles
	KEY:	congruent polygons corresponding parts
36.	ANS:	B PTS: 1 DIF: L2
	REF:	4-3 Triangle Congruence by ASA and AAS
	OBJ:	4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS Theorem
	STA:	(6)(B) TOP: 4-3 Problem 1 Using ASA KEY: ASA
37	ANS:	A PTS: 1 DIF: L3 REF: 4-1 Congruent Figures
071	OBJ:	4-1.1 To recognize congruent figures and their corresponding sides and angles
	STA:	(6)(C) TOP: 4-1 Problem 1 Finding Congruent Sides and Angles
	KEY:	congruent polygons corresponding parts word problem
38	ANS	$C = PTS \cdot 1 = DIF \cdot I \Delta$
50.	REE.	3-8 Constructing Parallel and Perpendicular Lines
	OBI-	3-8 2 Constructing Perpendicular Lines
	NAT·	NAEP 2005 G3b NAEP 2005 G3g ADP K 2 1 ADP K 2 2
	STA.	TX TEKS G 2 Δ KEV: construction parallel lines
30	ANS.	C PTS: 1 DIF: I 3 PEF: 5.7 Inequalities in One Triangle
59.	ORI-	5-7.1 To use inequalities involving angles and sides of triangles
	STA-	(5)(D) (6)(D) TOP: 5-7 Problem 5 Using the Triangle Inequality Theorem
	KEV.	Triangle Inequality Theorem
40	ANS.	A DTS: 1 DIE: 1.2 DEE: 1.1 Points Lines and Planes
40.	ORI-	1-1 1 To understand basic terms and postulates of geometry
	STA.	(4)(A) TOP: 1-1 Problem 1 Naming Points Lines and Planes
	KEV.	line nlane
41	ANS.	$D = PTS \cdot 1 = DIF \cdot I 3$
71.	RFF	4-2 Triangle Congruence by SSS and SAS
	OBI-	4-2 1 To prove two triangles congruent using the SSS and SAS Postulates
	STA:	(5)(A) (5)(C) (6)(B) TOP: 4-2 Problem 2 Using SSS
	KEY:	SSS reflexive property proof
42	ANS	
12.	II and	IK
	15 unu	
	PTS:	1 DIF: L2 REF: 5-3 Perpendicular and Angle Bisectors
	OBJ:	5-3.1 To use properties of perpendicular bisectors and angle bisectors
	STA:	(5)(C) (6)(A) TOP: 5-3 Problem 3 Using the Perpendicular Bisector Theorem
	KEY:	perpendicular bisector Perpendicular Bisector Theorem
43	ANS	
15.	x = 2	
	PTS:	1 DIF: L4 REF: 5-2 Midsegments of Triangles
	OBJ:	5-2.1 To use properties of midsegments to solve problems STA: (6)(D)
	TOP:	5-2 Problem 3 Finding Lengths KEY: Triangle Midsegment Theorem midsegment
44.	ANS:	A PTS: 1 DIF: L2
	REF:	5-3 Perpendicular and Angle Bisectors
	OBJ:	5-3.1 To use properties of perpendicular bisectors and angle bisectors
	STA:	(5)(C) (6)(A) TOP: 5-3 Problem 5 Using the Angle Bisector Theorem
	KEY:	angle bisector Converse of the Angle Bisector Theorem

45. ANS: A PTS: 1 DIF: L3 **REF: 2-2 Conditional Statements** OBJ: 2-2.1 To recognize conditional statements and their parts STA: (4)(B)|(4)(C)TOP: 2-2 Problem 1 Identifying the Hypothesis and the Conclusion KEY: conditional statement | hypothesis | conclusion **REF: 5-4 Bisectors in Triangles** 46. ANS: C PTS: 1 DIF: L2 OBJ: 5-4.1 To identify properties of perpendicular bisectors and angle bisectors TOP: 5-4 Problem 2 Finding the Circumcenter of a Triangle STA: (5)(A)|(5)(C)|(6)(D)KEY: circumcenter of a triangle | circumscribe | point of concurrency 47. ANS: B DIF: L3 REF: 5-4 Bisectors in Triangles PTS: 1 OBJ: 5-4.1 To identify properties of perpendicular bisectors and angle bisectors STA: (5)(A)|(5)(C)|(6)(D)TOP: 5-4 Problem 4 Identifying and Using the Incenter of a Triangle KEY: angle bisector | incenter of a triangle | point of concurrency 48. ANS: B **PTS:** 1 DIF: L3 REF: 8-3 The Tangent Ratio OBJ: 8-3.1 Using Tangents in Triangles NAT: NAEP 2005 M1m | ADP I.1.2 | ADP I.4.1 | ADP K.11.1 | ADP K.11.2 STA: TX TEKS G.9B| TX TEKS G.11C| TX TEKS G.3B| TX TEKS G.3D| TX TEKS G.5B TOP: 8-3 Example 1 KEY: leg adjacent to angle | leg opposite angle | tangent | tangent ratio 49. ANS: D PTS: 1 DIF: L3 REF: 5-5 Medians and Altitudes OBJ: 5-5.1 To identify properties of medians and altitudes of a triangle TOP: 5-5 Problem 1 Finding the Length of a Median STA: (6)(D) KEY: centroid of a triangle | median of a triangle 50. ANS: C PTS: 1 DIF: L3 REF: 5-7 Inequalities in One Triangle OBJ: 5-7.1 To use inequalities involving angles and sides of triangles TOP: 5-7 Problem 2 Using Theorem 5-10 STA: (5)(D)|(6)(D)51. ANS: A **PTS:** 1 DIF: L2 REF: 5-1 Midpoint and Distance in the Coordinate Plane OBJ: 5-1.1 To find the midpoint of a segment by deriving and using the midpoint formula TOP: 5-1 Problem 2 Finding the Midpoint STA: (2)(A)|(2)(B)KEY: coordinate plane | Midpoint Formula 52. ANS: BD || AE, DF || AC, BF || CE PTS: 1 DIF: L2 **REF: 5-2 Midsegments of Triangles** OBJ: 5-2.1 To use properties of midsegments to solve problems STA: (6)(D) TOP: 5-2 Problem 2 Identifying Parallel Segments KEY: midsegment | parallel lines | Triangle Midsegment Theorem 53. ANS: D PTS: 1 DIF: L3 **REF: 5-2 Midsegments of Triangles** OBJ: 5-2.1 To use properties of midsegments to solve problems STA: (6)(D) TOP: 5-2 Problem 3 Finding Lengths KEY: midsegment | Triangle Midsegment Theorem 54. ANS: C PTS: 1 DIF: L2 REF: 3-4 Parallel Lines and the Triangle Angle-Sum Theorem OBJ: 3-4.2 Using Exterior Angles of Triangles NAT: NAEP 2005 G3b | NAEP 2005 G3f | ADP J.5.1 | ADP K.1.2 STA: TX TEKS G.3C | TX TEKS G.3E | TX TEKS G.4A TOP: 3-4 Example 3 KEY: triangle | sum of angles of a triangle 55. ANS: A PTS: 1 DIF: L2 REF: 6-1 The Polygon Angle-Sum Theorems OBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygon

STA: (5)(A) TOP: 6-1 Problem 2 Finding a Polygon Angle Sum KEY: Polygon Angle-Sum Theorem 56. ANS: C PTS: 1 DIF: L4 **REF: 5-2 Midsegments of Triangles** OBJ: 5-2.1 To use properties of midsegments to solve problems STA: (6)(D) TOP: 5-2 Problem 3 Finding Lengths KEY: midsegment | Triangle Midsegment Theorem PTS: 1 DIF: L3 57. ANS: A REF: 4-2 Triangle Congruence by SSS and SAS OBJ: 4-2.1 To prove two triangles congruent using the SSS and SAS Postulates TOP: 4-2 Problem 4 Identifying Congruent Triangles STA: (5)(A)|(5)(C)|(6)(B)KEY: SSS | SAS | reasoning 58. ANS: A REF: 3-6 Parallel and Perpendicular PTS: 1 DIF: L4 Lines OBJ: 3-6.2 To write equations of parallel lines and perpendicular lines STA: (2)(B)|(2)(C)|(2)(E)|(2)(F)|(3)(A)TOP: 3-6 Problem 3 Writing an Equation of a Perpendicular Line KEY: perpendicular lines 59. ANS: B DIF: L2 PTS: 1 REF: 3-4 Parallel Lines and the Triangle Angle-Sum Theorem OBJ: 3-4.1 Finding Angle Measures in Triangles NAT: NAEP 2005 G3b | NAEP 2005 G3f | ADP J.5.1 | ADP K.1.2 TOP: 3-4 Example 1 STA: TX TEKS G.3E | TX TEKS G.4A KEY: triangle | sum of angles of a triangle 60. ANS: B PTS: 1 DIF: L3 REF: 3-6 Parallel and Perpendicular Lines OBJ: 3-6.1 To determine whether lines are parallel, perpendicular, or neither STA: (2)(B)|(2)(C)|(2)(E)|(2)(F)|(3)(A) TOP: 3-6 Problem 2 Classifying Lines KEY: perpendicular lines | parallel lines | compare properties of two functions 61. ANS: A REF: 5-7 Inequalities in One Triangle PTS: 1 DIF: L3 OBJ: 5-7.1 To use inequalities involving angles and sides of triangles TOP: 5-7 Problem 3 Using Theorem 5-11 STA: (5)(D)|(6)(D)62. ANS: B PTS: 1 DIF: L3 REF: 5-3 Perpendicular and Angle Bisectors OBJ: 5-3.1 To use properties of perpendicular bisectors and angle bisectors TOP: 5-3 Problem 5 Using the Angle Bisector Theorem STA: (5)(C)|(6)(A)KEY: angle bisector | Angle Bisector Theorem 63. ANS: D PTS: 1 REF: 1-1 Points, Lines, and Planes DIF: L3 OBJ: 1-1.1 To understand basic terms and postulates of geometry TOP: 1-1 Problem 1 Naming Points, Lines, and Planes STA: (4)(A) KEY: collinear | point 64. ANS: A PTS: 1 DIF: L3 REF: 5-1 Midpoint and Distance in the Coordinate Plane OBJ: 5-1.2 To find the distance between two points in the coordinate plane by deriving and using the distance formula STA: (2)(A)|(2)(B)TOP: 5-1 Problem 6 Finding Distance KEY: coordinate plane | Distance Formula | word problem | problem solving 65. ANS: C PTS: 1 DIF: L2 **REF: 2-1 Patterns and Conjectures** OBJ: 2-1.1 To use inductive reasoning to make conjectures STA: (4)(C)|(5)(A)TOP: 2-1 Problem 5 Verifying a Conjecture Is False Using a Counterexample KEY: conjecture | counterexample