Sharyland ISD Study Guide

Algebra I Semester A

Student Name: Student ID:

Algebra 1 Semester A CBE

REVIEW

Multiple Choice

Identify the choice that best completes the statement or answers the question.

	Solve the proportion.			
 1.	$\frac{4}{9} = \frac{13}{x}$			
	a. 5.8	b. 2.8	c. 117	d. 29.3
 2.	$\frac{x-7}{11} = \frac{8}{5}$			
	a. $\frac{123}{5}$	b. $\frac{88}{5}$	c. $\frac{111}{8}$	d. 19
	Write the inequality i	in words.		

3. 5n - 10 > 26

- a. Five times *n* less than ten is twenty-six.
- b. Ten plus five times a number is less than or equal to twenty-six.
- c. Ten less than five times a number is greater than twenty-six.
- d. Ten less than a number is less than or equal to twenty-six.
- 4. The function j(x) = 39x represents the number of jumping jacks j(x) you can do in x minutes. How many jumping jacks can you do in 5 minutes?

a.	195 jumping jacks	c.	144 jumping jacks
b.	7 jumping jacks	d.	234 jumping jacks

What is the solution of the system? Use substitution.

5. y = 4x + 3y = 5xa. (-3, -15) b. (-15, -3) c. (0.3, 1.7) d. (3, 15) $6. \quad 3x + 2y = 7$ y = -3x + 11c. $\left(-4, \frac{19}{2}\right)$ d. (5, -4)a. (6, -3) b. (6, -7)

Determine whether the graph shows a positive correlation, a negative correlation, or no correlation. If there is a positive or negative correlation, describe its meaning in the situation.

7.

- a. no correlation
- b. negative; as time passes, speed decreases
- c. positive; as time passes, speed increases
- d. positive; as time passes, speed decreases

Solve the equation.

8. -6p - 21 = 3p - 12b. 3 a. 1 c. –3 d. -1 9. 6 = 2(x + 8) - 5xa. <u>2</u> 3 b. $3\frac{1}{3}$ d. $-3\frac{1}{3}$ 2 c. 10. f(x) = 9x + 5, find f(5c - 2). a. 36c + 5 c. 45c + 5b. 45c - 13d. 45c + 13 11. Solve the area formula for a triangle, $A = \frac{1}{2}bh$, for h. a. $h = \frac{2b}{A}$ b. $h = \frac{b}{2A}$ c. $h = \frac{2A}{b}$ d. $h = \frac{A}{2b}$ 12. What is an equation, in standard form, of the line through (1, 7) and (-2, -3)? c. 3x - y = 11a. -10x + y = 11b. 3x - 10y = 11d. -10x + 3v = 11

Write an equation in point-slope form for the line through the given point with the given slope.

a. $y - 10 = -0.83(x + 3)$	c. $y - 3 = -0.83(x + 10)$
b. $y - 10 = -0.83(x - 3)$	d. $y + 10 = -0.83(x - 3)$

Solve the equation.

13. (3, -10); m = -0.83

 $14. \quad 45 + 2 + 3w = 83$

a. -12 b. 12 c. 15 d. 11

What is the graph of each function rule?

Find the slope of the line through the pair of points.

_____ 18. (1, 12) and (0, -8)

What is the graph of the system?

$$21. \quad y \le -x - 1 \\ y \ge 2x + 4$$

What is the solution of the system? Use substitution.

- $22. \quad 8x 2y = 18 \\ 3x y = 5 \\ a. \quad (2, -1) \qquad b. \quad (4, 7) \qquad c. \quad (-5, -28) \qquad d. \quad (2, 1)$
- _____ 23. The table below shows the distance traveled by a person driving at the rate of 60 miles per hour.

Hours	1	2	3	4	5
Distance (miles)	60	120	180	240	300

Write an equation to describe the relationship.

a.
$$d = 60t$$

b. $d = 60 \div t$
c. $d = 60 \div t$
d. $d = 60 - t$

Graph the function. Then state if the function represents exponential growth or exponential decay.

Graph the equation.

What system of inequalities is represented by the graph?

Write an equation for the line that is parallel to the given line and passes through the given point.

27. y = 5x + 8; (2, 16) a. y = 5x - 78b. y = 5x + 6c. $y = -\frac{1}{5}x - 6$ d. $y = \frac{1}{5}x + 6$

What is the solution of the system? Use a graph.

- 29. A customer went to a garden shop and bought some potting soil for \$17.00 and 7 shrubs. The total bill was \$104.50. Write and solve an equation to find the price of each shrub.
 - a. 7p + \$17.00 = \$104.50; p = \$15.75b. 7p + \$17.00 = \$104.50; p = \$12.50

c. 7(p + \$17.00) = \$104.50; p = \$9.50d. 7p + 17p = \$104.50; p = \$4.35

b. $p + \frac{1}{.00} = \frac{104.50}{.00}; p = \frac{12.50}{.00}$

- 31. You can use the formula $C = \frac{5}{9}(F-32)$ to convert temperature in degrees Fahrenheit, *F*, to temperature in degrees Celsius, *C*. What is 68°F in degrees Celsius? Round your answer to the nearest tenth.
 - a. 5.8°C b. 55.6°C c. 20°C d. 36°C

What is the graph of the inequality in the coordinate plane?

_____ 32. y < -2

Write a direct variation equation that relates x and y. Assume that y varies directly as x. Then solve.

33. If y = 9 when x = -1, find y when x = -9.

a.	y = -9x; 81	c.	y = -9x; 72
b.	y = 9x; -81	d.	y = -10x; 81

What is the graph of the equation?

34. x = 1

Graph the equation.

Write a linear equation in slope-intercept form to model the situation.

36. The temperature is 38° and is expected to rise at a rate of 3° per hour.

a.	T = 3 + 38h	_	c.	T = 38 - 3h
b.	T = 38 + 3h		d.	h = 38 + 3T

The pair of figures is similar. Find x. Round to the nearest tenth if necessary.

37.

a. 22.2 cm b. 27.7 cm c. 30 cm d. 14.4 cm

Write the equation of a line that is perpendicular to the given line and that passes through the given point.

38.
$$x + 3y = 16; (-3, -4)$$

a. $y = 3x + 5$
b. $y = \frac{1}{3}x + 9$
c. $y = \frac{1}{3}x + 5$
d. $y = -3x + 5$

39. The graph of a linear function is represented below. Identify the *x*-intercept, *y*-intercept, and slope of the graph, and the zero of the function.

d. *x*-intercept: 1; *y*-intercept: -4; slope: $-\frac{1}{2}$; zero: x = -4

Write an equation of the line with the given slope and y-intercept

40. slope:
$$-\frac{4}{7}$$
, y-intercept: 8

a.
$$y = -\frac{1}{7}x + 8$$

b. $y = -\frac{4}{7}x - 8$
c. $y = \frac{1}{7}x + 8$
d. $y = -\frac{7}{4}x + 8$

Beach Bike Rentals charges \$5.00 plus \$0.20 per mile to rent a bicycle.

41. Write an equation for the total cost C of renting a bicycle and riding for m miles.

a. C = 5 + 0.2mc. m = 5 + 0.2C'b. C = 0.2 + 5md. C = 5 + 2m

42. A tree casts a shadow 10 ft long. A boy standing next to the tree casts a shadow 2.5 ft. long. The triangle shown for the tree and its shadow is similar to the triangle shown for the boy and his shadow. If the boy is 5 ft. tall, how tall is the tree?

What equation in slope intercept form represents the line that passes through the two points?

- _____ 43. (2, 5), (9, 2)
 - a. $y = \frac{3}{7}x \frac{41}{7}$ b. $y = -\frac{7}{3}x - \frac{41}{7}$ c. $y = \frac{7}{3}x + \frac{41}{7}$ d. $y = -\frac{3}{7}x + \frac{41}{7}$

Tell whether the lines for each pair of equations are *parallel*, *perpendicular*, or *neither*.

 45. You have 8 cups of flour. It takes 1 cup of flour to make 24 cookies. The function c(f) = 24f represents the number of cookies, *c*, that can be made with *f* cups of flour. What domain and range are reasonable for the function? What is the graph of the function?

b. The domain is $0 \le f \le 8$. The range is $0 \le c(f) \le 192$.

d. The domain is $1 \le f \le 8$. The range is $24 \le c(f) \le 192$.

Write a function for the situation. Is the graph continuous or discrete?

46. A movie store sells DVDs for \$11 each. What is the cost, C, of n DVDs?

a. C = 11n; continuous

```
c. C = 11 + n; continuous
```

b. C = 11 + n; discrete

d. C = 11n; discrete

Short Answer

47. Identify the domain and range of the relation.

- 48. Kate pays \$203 in advance on her account at the athletic club. Each time she uses the club, \$9 is deducted from the account. Find the value remaining in the account after 12 visits.
- 49. Model the function rule y = -11x + 6 with a table of values and a graph.

x	у	,						
-1								
0								
1								
			1	v				
			6					-
			4-					-
			2					-
<hr/>								-
6_	4	2_			2	4	6	
			-2-					-
			-4-					
			-6-					
				,				J

Other

50. Do the values in the table represent a direct variation? Explain your answer.

x	4	5	7
у	13.1	16.3	22.6

REVIEW

MULTIPLE CHOICE

1.	ANS:	D	PTS:	1	DIF:	L2	REF:	3-4 Ratio and Proportion
	OBJ:	3-4.2 Solving	Proport	ions				
	NAT:	NAEP 2005 N	4b NA	EP 2005 N4c	NAEP	2005 M1 NA	EP 200	05 M2b NAEP 2005 A2f ADP
	I.1.2	ADP J.5.1 AD	P K.8.1	l	STA:	TX TEKS 8.1	B TX	TEKS 8.3B
	TOP:	3-4 Example 4	ŀ		KEY:	proportion		
2.	ANS:	А	PTS:	1	DIF:	L2	REF:	3-4 Ratio and Proportion
	OBJ:	3-4.2 Solving	Proport	ions				
	NAT:	NAEP 2005 N	4b NA	EP 2005 N4c	NAEP	2005 M1 NA	EP 200	05 M2b NAEP 2005 A2f ADP
	I.1.2	ADP J.5.1 AD	P K.8.1	l	STA:	TX TEKS 8.1	B TX	TEKS 8.3B
	TOP:	3-4 Example 5	5		KEY:	proportion		
3.	ANS:	С	PTS:	1	DIF:	L3	REF:	4-1 Inequalities and Their Graphs
	OBJ:	4-1.2 Graphing	g and W	riting Inequali	ties in (One Variable	NAT:	NAEP 2005 A3a ADP J.3.1
	KEY:	translating an	inequal	ity inequality				
4.	ANS:	А	PTS:	1	DIF:	L2		
	REF:	2-6 Formalizin	ng Relat	tions and Funct	ions			
	OBJ:	2-7.1 To find o	domain	and range and	use fun	ction notation	STA:	(12)(A)
	TOP:	2-7 Problem 1	Evalua	ting a Function	L		KEY:	function notation
5.	ANS:	D	PTS:	1	DIF:	L2		
	REF:	4-2 Solving Sy	stems V	Using Substitut	ion			
	OBJ:	4-2.1 To solve	system	s of equations	using s	ubstitution	STA:	(2)(I) (3)(G) (5)(C)
	TOP:	4-2 Problem 1	Using	Substitution				
	KEY:	substitution m	ethod	exact solution of	of a sys	tem of linear eo	quation	S
6.	ANS:	D	PTS:	1	DIF:	L3		
	REF:	4-2 Solving Sy	stems V	Using Substitut	ion			
	OBJ:	4-2.1 To solve	system	s of equations	using s	ubstitution	STA:	(2)(I) (3)(G) (5)(C)
	TOP:	4-2 Problem 1	Using	Substitution				
	KEY:	substitution m	ethod	exact solution of	of a sys	tem of linear ea	quation	S
7	ANG.	D						

7. ANS: B

A scatter plot is a graph in which two sets of data are plotted as ordered pairs in a coordinate plane. There is a positive correlation when as x increases, y increases. There is a negative correlation when as x increases, y decreases. There is no correlation when *x* and *y* are not related.

	Feedback
Α	Are the variables related?
В	Correct!
С	Is the speed increasing?
D	What is meant by positive correlation?

PTS: 1 DIF: Average REF: Lesson 4-6

OBJ: 4-6.1 Interpret points on a scatter plot. STA: A.1(E) | A.2(D) | A.3(B) | A.6(D)

TOP: Interpret points on a scatter plot KEY: Scatter Plot | Interpret Data

8. ANS: D PTS: 1 DIF: L2

REF: 7-5 Solving Equations With Variables on Both Sides

OBJ: 7-5.1 Solving Equations With Variables on Both Sides NAT: NAEP 2005 A4a | NAEP 2005 A4c STA: TX TEKS 8.4 | TX TEKS 8.5A TOP: 7-5 Example 1

KEY: combining like terms | solving equations with variables on both sides

- 9. ANS: B
 PTS: 1
 DIF: L3
 REF: 7-2 Solving Multi-Step Equations

 OBJ:
 7-2.2 Using the Distributive Property
 NAT: NAEP 2005 A4a | NAEP 2005 A4c

 STA:
 TX TEKS 8.2C | TX TEKS 8.5A
 TOP: 7-2 Example 3

 KEY:
 combining like terms | solving multi-step equations | Distributive Property
- 10. ANS: B

The function value f(a) is found by substituting a for x in the equation.

	Feedback
Α	Did you multiply carefully?
В	Correct!
С	Did you evaluate carefully after substituting?
D	Be careful with signs.

	PTS:	1 D	IF: Av	verage	REF:	Lesson 3-2	OBJ:	3-2.2 Find functional values.
	STA:	A.4(A) A.4(C)	A.5(C))	TOP:	Find functiona	l value	S
	KEY:	Functions Funct	tional V	alues				
11.	ANS:	C PT	ΓS: 1		DIF:	L2	REF:	7-7 Transforming Formulas
	OBJ:	7-7.1 Solving For	rmulas :	for a Given V	Variabl	e	NAT:	NAEP 2005 A4e
	STA:	TX TEKS 8.5A			TOP:	7-7 Example 2	2	
	KEY:	transforming a fo	ormula					
12.	ANS:	D P7	ΓS: 1		DIF:	L3	REF:	3-5 Standard Form
	OBJ:	3-5.2 To write lin	near equ	ations in sta	ndard f	orm		
	STA:	(2)(A) (2)(B) (2))(C) (2)	(G) (3)(A)	(3)(C)			
	TOP:	3-5 Problem 4 W	riting L	inear Equati	ons in S	Standard Form		
	KEY:	standard form of	a linear	equation				
13.	ANS:	D PT	ΓS: 1		DIF:	L3	REF:	3-4 Point-Slope Form
	OBJ:	3-4.1 To write an	id graph	n linear equat	tions us	sing point-slope	e form	
	STA:	(2)(B) (2)(C) (3))(A) (3)	(B) (3)(C)	(12)(E))		
	TOP:	3-4 Problem 1 W	'riting a	n Equation in	n Point	-Slope Form	KEY:	point-slope form
14.	ANS:	B PT	ΓS: 1		DIF:	L2	REF:	3-2 Solving Multi-Step Equations
	OBJ:	3-2.1 Using the I	Distribu	tive Property	to Cor	nbine Like Ter	ms	
	NAT:	NAEP 2005 A3b	NAEI	P 2005 A3c	NAEP	2005 A4a NA	AEP 20	05 A4c ADP J.3.1 ADP J.5.1
	STA:	TX TEKS A.4A	TX TE	EKS A.7B	TOP:	3-2 Example 1		
	KEY:	Addition and Sub	otraction	n Properties	of Equa	ality Multiplic	ation a	nd Division Properties of Equality
	solvin	g equations multi	i-step ea	quation				
15.	ANS:	B PT	ΓS: 1		DIF:	L3	REF:	4-5 Linear Inequalities
	OBJ:	4-5.1 To graph lin	near ine	equalities in t	two var	iables	STA:	(2)(H) (3)(D)
	TOP:	4-5 Problem 2 G	raphing	an Inequalit	y in Tw	vo Variables	KEY:	linear inequality
16.	ANS:	A PT	ΓS: 1		DIF:	L4	REF:	4-5 Linear Inequalities
	OBJ:	4-5.1 To graph lin	near ine	equalities in t	two var	iables	STA:	(2)(H) (3)(D)
	TOP:	4-5 Problem 2 Gi	raphing	an Inequalit	y in Tw	vo Variables	KEY:	linear inequality
17.	ANS:	C PT	ГS: 1		DIF:	L2	REF:	2-4 Graphing a Function Rule
	OBJ:	2-4.1 To graph ed	quations	s that represe	ent func	ctions	STA:	(3)(C) (2)(A) (3)(A)
	TOP:	2-4 Problem 4 Gi	raphing	Nonlinear F	unctior	n Rules	KEY:	continuous graph
18.	ANS:	C PT	ΓS: 1		DIF:	L2	REF:	2-2 Linear Equations
	OBJ:	2-2.1 Graphing L	Linear E	quations	TOP:	2-2 Example 3	;	
	KEY:	slope						

- 19. ANS: DPTS: 1DIF: L2REF: 2-2 Linear EquationsOBJ: 2-2.1 Graphing Linear EquationsTOP: 2-2 Example 3KEY: slope
- 20. ANS: A PTS: 1 DIF: L3 REF: 4-1 Solving Systems By Graphing OBJ: 4-1.1 To analyze special systems STA: (2)(I)|(3)(F)|(5)(C)TOP: 4-1 Problem 3 Systems With Infinitely Many Solutions or No Solution KEY: system of linear equations | solution of a system of linear equations | inconsistent 21. ANS: B PTS: 1 DIF: L3 REF: 4-6 Systems of Linear Inequalities OBJ: 4-6.1 To solve systems of linear inequalities by graphing STA: (2)(H)|(3)(D)|(3)(H)TOP: 4-6 Problem 1 Graphing a System of Inequalities KEY: system of linear inequalities
- 22. ANS: B PTS: 1 DIF: L3 REF: 4-2 Solving Systems Using Substitution OBJ: 4-2.1 To solve systems of equations using substitution STA: (2)(I)| (3)(G)| (5)(C) TOP: 4-2 Problem 2 Solving for a Variable and Using Substitution KEY: substitution method | exact solution of a system of linear equations
- 23. ANS: A

Find the difference of the values for *t* and *d*. Use the relationship between them to write an equation.

	Feedback
Α	Correct!
В	Check the operator.
С	Check your answer.
D	Look at the hint and try again!

	PTS:	1	DIF:	Basic	REF:	Lesson 3-5		
	OBJ:	3-5.1 Write an	equation	on for a propor	tional c	or nonproportion	nal rela	tionship.
	STA:	A.3(B) A.5(C	C)	• •		• •		•
	TOP:	Write an equa	tion for	a proportional	or non	proportional rel	ationsh	ip.
24.	ANS:	А	PTS:	1	DIF:	L2	REF:	13-3 Exponential Growth and
	Decay							
	OBJ:	13-3.2 Expone	ential D	ecay	NAT:	NAEP 2005 A	.2g	
	TOP:	13-3 Example	3		KEY:	function expo	onentia	l decay
25.	ANS:	В	PTS:	1	DIF:	L3	REF:	3-4 Point-Slope Form
	OBJ:	3-4.1 To write	and gra	aph linear equa	tions u	sing point-slope	e form	
	STA:	(2)(B) (2)(C)	(3)(A)	(3)(B) (3)(C)	(12)(E)		
	TOP:	3-4 Problem 2	Graphi	ing Using Point	t-Slope	Form	KEY:	point-slope form
26.	ANS:	С	PTS:	1	DIF:	L3	REF:	4-6 Systems of Linear Inequalities
	OBJ:	4-6.1 To solve	e system	ns of linear inec	ualitie	s by graphing	STA:	(2)(H) (3)(D) (3)(H)
	TOP:	4-6 Problem 2	Writin	g a System of I	nequal	ities From a Gra	aph	
	KEY:	system of line	ar inequ	alities	-		-	
27.	ANS:	В	PTS:	1	DIF:	L2	REF:	3-6 Parallel and Perpendicular
	Lines							*
	OBJ:	3-6.2 To write	equation	ons of parallel l	ines an	d perpendicula	r lines	
	STA:	(2)(B) (2)(C)	(2)(E)	$(2)(F)\hat{ }(3)(A)$	TOP:	3-6 Problem 1	Writin	g an Equation of a Parallel Line
	KEY:	parallel lines						
28.	ANS:	D	PTS:	1	DIF:	L2	REF:	4-1 Solving Systems By Graphing
	OBJ:	4-1.2 To solve	e system	ns of equations	by grap	ohing	STA:	(2)(I) (3)(F) (5)(C)
	TOP:	4-1 Problem 1	Solvin	g a System of I	Equatio	ns by Graphing	5	
	KEY:	system of line	ar equa	tions approxin	nate sol	lution of a syste	em of li	near equations consistent
	indepe	endent	-			-		

- 29. ANS: B PTS: 1 DIF: L2 REF: 3-1 Solving Two-Step Equations OBJ: 3-1.1 Solving Two-Step Equations NAT: NAEP 2005 N5e | NAEP 2005 A2e | NAEP 2005 A4a | NAEP 2005 A4c | ADP J.3.1 | ADP J.5.1 STA: TX TEKS A.4A | TX TEKS A.7A | TX TEKS A.7C TOP: 3-1 Example 2 KEY: Addition and Subtraction Properties of Equality | Multiplication and Division Properties of Equality | two-step equation | equivalent equations | inverse operations | solution of the equation | solving equations | problem solving | word problem 30. ANS: A PTS: 1 DIF: L2 **REF: 2-2 Linear Equations** OBJ: 2-2.1 Graphing Linear Equations TOP: 2-2 Example 1 KEY: linear equation | graphing 31. ANS: C PTS: 1 DIF: L3 REF: 1-2 Exponents and Order of Operations OBJ: 1-2.2 Simplifying and Evaluating Expressions With Grouping Symbols
 - NAT: NAEP 2005 A3b | ADP I.1.3 | ADP J.1.6 | ADP K.8.2 TOP: 1-2 Example 7
 - KEY: order of operations | word problem | problem solving
- 32. ANS: BPTS: 1DIF: L3REF: 4-5 Linear InequalitiesOBJ: 4-5.1 To graph linear inequalities in two variablesSTA: (2)(H)| (3)(D)TOP: 4-5 Problem 3 Graphing a Linear Inequality in One Variable
 - KEY: linear inequality

33. ANS: A

A direct variation is described by an equation of the form y = kx, where $k \neq 0$. We say that y varies directly with x or y varies directly as x. In the equation y = kx, k is the constant of variation.

	Feedback
Α	Correct!
В	Be careful with sign rules.
С	Are you sure about the solution to the equation?
D	Does that equation work for the given values?

	PTS:	1 DIF: Basic REF:	Lesson 4-2		
	OBJ:	4-2.1 Write and graph direct variation equa	tions.	STA:	A.5(C) A.6(F) A.6(G) A.7(A)
	TOP:	Write and graph direct variation equations			
	KEY:	Direct Variation Graphs Equations			
34.	ANS:	D PTS: 1 DIF:	L3	REF:	3-5 Standard Form
	OBJ:	3-5.1 To graph linear equations using interest	cepts		
	STA:	(2)(A) (2)(B) (2)(C) (2)(G) (3)(A) (3)(C)	1		
	TOP:	3-5 Problem 3 Writing Equations for Horiz	ontal and Vertic	cal Line	es
	KEY:	standard form of a linear equation			
35.	ANS:	A PTS: 1 DIF:	L3	REF:	3-3 Slope-Intercept Form
	OBJ:	3-3.2 To graph linear equations in slope-int	ercept form	STA:	(2)(B) (2)(C) (3)(A) (3)(B) (3)(C)
	TOP:	3-3 Problem 5 Graphing a Linear Function			
	KEY:	linear equation y-intercept slope-intercep	t form		
	1 3 7 9	2			

36. ANS: B

If a quantity changes at a constant rate over time, it can be modeled by a linear equation. The *y*-intercept represents a starting point, and the slope represents the rate of change.

	Feedback
Α	What is the starting temperature?
В	Correct!
С	Is the temperature decreasing?

	D	Which variable	is the ir	ndependent var	iable?			
				<u> </u>				
	PTS:	1	DIF:	Basic	REF:	Lesson 4-3		
	OBJ:	4-3.2 Model re	eal-wor	ld data with an	equation	on in slope-inte	rcept fo	vrm.
	STA:	A.1(D) A.5(0	C) A.6	(D) A.7(A) A	A.7(B)	A.7(C)		
	TOP:	Model real-wo	orld data	a with an equat	tion in s	slope-intercept :	form	
	KEY:	Slope-Intercep	ot Form	Equations R	eal-Wo	orld Problems		
37.	ANS:	D	PTS:	1	DIF:	L2	REF:	3-5 Proportions and Similar Figures
	OBJ:	3-5.1 Similar	Figures					
	NAT:	NAEP 2005 N	[4c NA	AEP 2005 M1	ADP K	K. NAEP 2005	M2f 1	NAEP 2005 M2g NAEP 2005 G2e
	ADP 1	I.1.2 ADP J.5.	1 ADP	• K.3 ADP K.'	7			
	STA:	TX TEKS 8.3	B TX '	TEKS 8.6A T	Х ТЕК	S 8.9B	TOP:	3-5 Example 1
	KEY:	similar figures	; propo	ortion				
38.	ANS:	А	PTS:	1	DIF:	L3	REF:	3-6 Parallel and Perpendicular
	Lines							
	OBJ:	3-6.2 To write	equation	ons of parallel	lines an	nd perpendicula	r lines	
	STA:	(2)(B) (2)(C)	(2)(E)	(2)(F) (3)(A)				
	TOP:	3-6 Problem 3	Writin	g an Equation of	of a Pei	rpendicular Line	e	
	KEY:	perpendicular	lines					
39.	ANS:	В	PTS:	1	DIF:	L3	REF:	3-5 Standard Form
	OBJ:	3-5.1 To graph	1 linear	equations usin	g interc	cepts		
	STA:	(2)(A) (2)(B)	(2)(C)	(2)(G) (3)(A)	(3)(C)			
	TOP:	3-5 Problem 6	Identif	ying Features of	of a Lin	lear Function	KEY:	x-intercept zero of a function
40.	ANS:	A						
	The li	near equation y	= mx +	<i>b</i> is written in	slope-i	ntercept form,	where <i>n</i>	n is the slope and b is the y-intercept.

	Feedback
Α	Correct!
В	What is the y-intercept?
С	What is the slope of the line?
D	What is the slope?

PTS: 1 REF: Lesson 4-3 DIF: Basic

OBJ: 4-3.1 Write and graph linear equations in slope-intercept form.

- STA: A.1(D) | A.5(C) | A.6(D) | A.7(A) | A.7(B) | A.7(C)TOP: Write and graph linear equations in slope-intercept form
- KEY: Slope-Intercept Form | Linear Equations | Graphs
- 41. ANS: A

If a quantity changes at a constant rate over time, it can be modeled by a linear equation. The y-intercept represents a starting point, and the slope represents the rate of change.

	Feedback
Α	Correct!
В	Which number would be the y-intercept in the linear equation?
С	Which variable should be the independent variable?
D	What is the rate of change?

PTS: 1 DIF: Basic REF: Lesson 4-3

OBJ: 4-3.2 Model real-world data with an equation in slope-intercept form.

STA: A.1(D) | A.5(C) | A.6(D) | A.7(A) | A.7(B) | A.7(C)

	TOP:	Model real-wo	orld data	a with an equat	tion in s	slope-intercept	form	
	KEY:	Slope-Intercep	ot Form	Equations R	leal-Wo	orld Problems		
42.	ANS:	D	PTS:	1	DIF:	L2	REF:	3-5 Proportions and Similar Figures
	OBJ:	3-5.2 Indirect	Measur	ement and Sca	le Drav	vings		
	NAT:	NAEP 2005 N	[4c NA	EP 2005 M1	ADP K	K. NAEP 2005	M2f]	NAEP 2005 M2g NAEP 2005 G2e
	ADP I	.1.2 ADP J.5.	1 ADP	K.3 ADP K.	7			
	STA:	TX TEKS 8.3	B TX T	TEKS 8.6A T	X TEK	S 8.9B	TOP:	3-5 Example 3
	KEY:	indirect measu	irement	similar figure	es prop	portion problem	m solvi	ng word problem
43.	ANS:	D	PTS:	1	DIF:	L2	REF:	3-3 Slope-Intercept Form
	OBJ:	3-3.1 To write	linear e	equations using	g slope-	intercept form	STA:	(2)(B)(2)(C)(3)(A)(3)(B)(3)(C)
	TOP:	3-3 Problem 4	Writin	g an Equation	From T	wo Points		
	KEY:	linear equation	n y-inte	ercept slope-i	ntercep	t form		
44.	ANS:	C	PTS:	1	DIF:	L3	REF:	3-6 Parallel and Perpendicular
	Lines							-
	OBJ:	3-6.1 To deter	mine w	hether lines are	e parall	el, perpendicula	ar, or ne	either
	STA:	(2)(B) (2)(C)	(2)(E)	(2)(F) (3)(A)	TOP:	3-6 Problem 2	Classi	fying Lines
	KEY:	perpendicular	lines p	arallel lines c	compare	e properties of t	wo fun	ctions
45.	ANS:	В	PTS:	1	DIF:	L3		
	REF:	2-6 Formalizin	ng Relat	tions and Func	tions			
	OBJ:	2-7.1 To find of	domain	and range and	use fur	nction notation	STA:	(12)(A)
	TOP:	2-7 Problem 3	Identif	ying a Reasona	able Do	main and Rang	e	
	KEY:	domain range	e funct	ion notation c	choosin	g the correct sc	ale	
46.	ANS:	D	PTS:	1	DIF:	L3	REF:	2-4 Graphing a Function Rule
	OBJ:	2-4.1 To graph	n equati	ons that repres	ent fun	ctions	STA:	(3)(C) (2)(A) (3)(A)
				1				

- TOP: 2-4 Problem 3 Identifying Continuous and Discrete Graphs
- KEY: continuous graph | discrete graph

SHORT ANSWER

47. ANS: The domain is {-9, -4, 3, 9}. The range is {2}.

PTS:	1 DIF:	L3	REF:	2-6 Formalizing Relations and Functions
OBJ:	2-7.1 To find domain	n and range and	use fur	action notation STA: (12)(A)
TOP:	2-6 Problem 1 Identi	fying Functions	Using	Mapping Diagrams
KEY:	relation domain ra	nge		

48. ANS:

\$95

To find the remaining amount, subtract the amount deducted after 12 visits from the initial amount deposited in the account.

	PTS: 1	DIF:	Advanced REF: Lesson 3-4	OBJ: 3-4.3 Solve multi-step problems.
	STA: A.3(B)	TOP:	Solve multi-step problems.	KEY: Multi-step Problem Solving
49.	ANS:			

x	у
-1	17

PTS:1DIF:L3REF:2-4 Graphing a Function RuleOBJ:2-4.1 To graph equations that represent functionsSTA:(3)(C)| (2)(A)| (3)(A)TOP:2-4 Problem 1 Graphing a Function RuleKEY:continuous graph

OTHER

50. ANS:

No; there is no constant of variation k such that y = kx.

$$\frac{13.1}{4} \neq \frac{16.3}{5} \neq \frac{22.6}{7}$$

PTS:1DIF:L3REF:2-3 Direct VariationOBJ:2-3.1 Writing and Interpreting a Direct VariationSTA:TX TEKS 2A.10GTOP:2-3 Example 1

KEY: direct variation | constant of variation | writing in math | reasoning