SHARYLAND HIGH SCHOOL SUMMER ALGEBRA I PACKET TABLE OF CONTENTS (LINK TO TUTORIALS)

- 1. ORDER OF OPERATIONS USING INTEGERS (https://tinyurl.com/hcpxc54)
- 2. OPERATIONS ON FRACTIONS AND MIXED NUMBERS (https://tinyurl.com/gn2h3mo)
- 3. VERBAL EXPRESSIONS (https://tinyurl.com/gw3trs4)
- 4. SOLVING EQUATIONS USING INVERSE OPERATIONS (https://tinyurl.com/jnnueq4)
- 5. GRAPHING POINTS ON A COORDINATE PLANE (https://tinyurl.com/hrr5ope)
- 6. SLOPE INTERCEPT FORM (https://tinyurl.com/zxbzzu4)
- 7. SOLVING EQUATIONS (https://tinyurl.com/zp3c9nj)
- 8. GRAPHING (https://tinyurl.com/y8d2huxt)

Complete these problems to the best of your ability. Video tutorial links are provided. Test will be week two of semester. These are pre-requisite skills.

ORDER OF OPERATIONS USING INTEGERS

A Review on Operations on Integers

Addition Problems:

negative + negative

$$-6 + (-20)$$

$$6 + (-20)$$

$$-6 + 20$$

$$(-26)$$

$$\widehat{(-14)}$$

$$\widehat{(14)}$$

Multiplication & Division Problems:

negative & positive

negative & negative

$$-18 \cdot 2$$

$$-18 \div 2$$

$$-15 \cdot (-3)$$

$$-15 \div (-3)$$

$$\begin{array}{c} -36 \end{array} \qquad \begin{array}{c} -9 \end{array}$$

Remember PEMDAS

 $18 - 32 \rightarrow 18 + (-32)$

$$-7 + (-18 \div 2)^2 \div 3 \cdot 5$$
$$-7 + (-9)^2 \div 3 \cdot 5$$

$$-7 + 81 \div 3 \cdot 5$$

$$-7 + 27 \cdot 5$$

 $-7 + 135$

-7 + 135 128

\S

Subtraction Problems:

 $-25 - 11 \rightarrow -25 + (-11)$ $-4 - (-13) \rightarrow -4 + ^{+}13$

Subtraction is the same as adding the opposite.

parentheses exponents

multiplication/division

(of the 2nd number)

(left to right)
addition/subtraction

(left to right)

1.
$$15-12 \div 4$$

2.
$$7+2\cdot 4-4$$

3.
$$23 - (-17 + 8)$$

4.
$$24 \div (-3) \cdot 2 - 3^2$$

5.
$$-12(20-17)-3.6$$

6.
$$3[2+(12\div3)^2]$$

| 7.
$$\frac{-8(2)-4}{8 \div 4}$$

8.
$$(4-10)^2 - [(-10) \div (-5)]$$

9.
$$\frac{2 \cdot 4^2 - 8 \div 2}{(5 + 2) \cdot 2}$$

10. Let
$$x = -2$$
, $y = 4$, and $z = \frac{1}{2}$
Evaluate $z(y-3x)+x$

OPERATIONS ON FRACTIONS & MIXED NUMBERS

Addition & Subtraction Problems:

You <u>must</u> have common denominators before adding or subtracting. Making them improper fractions first is optional (your choice).

$$9\frac{1}{18} + 4\frac{5}{6}$$

$$9\frac{1}{18} + 4\frac{5}{6 \cdot 3}$$

$$9\frac{1}{18} + 4\frac{15}{18}$$

$$13\frac{16 \div 2}{18 \div 2}$$

$$13\frac{8}{18}$$

$$4\frac{3}{4} - 1\frac{5}{6}$$

$$4\frac{3 \cdot 3}{4 \cdot 3} - 1\frac{5 \cdot 2}{6 \cdot 2}$$

$$4\frac{9}{12} - 1\frac{10}{12}$$

$$2\frac{11}{12}$$

$$- 1\frac{10}{12}$$

$$2\frac{11}{12}$$

or make them improper fractions
$$4\frac{9}{12} - 1\frac{10}{12}$$

$$\frac{57}{12} - \frac{22}{12}$$

Multiplication & Division Problems:

You <u>must</u> make mixed numbers become improper fractions before multiplying or dividing. There's no need to get common denominators.

$$2\frac{2}{3} \cdot 1\frac{1}{6}$$
 or you can reduce any numerator with any denominator before multiplying

$$\frac{\frac{6}{3} \cdot \frac{7}{6}}{\frac{56}{3} \cdot \frac{7}{6}} = \frac{\frac{8}{3} \cdot \frac{7}{6}}{\frac{2}{3} \cdot \frac{7}{6}}$$

$$\frac{\frac{56}{3} \cdot \frac{2}{18}}{\frac{18}{2}} = \frac{\frac{4}{3} \cdot \frac{7}{3}}{\frac{28}{9}} \text{ or } 3\frac{1}{9}$$

$$\frac{28}{9} \text{ or } 3\frac{1}{9}$$

Division = Multiplying by the Reciprocal (of the 2nd number)

$$\frac{4}{7} \div 1\frac{2}{9} \qquad 15 \div 2\frac{1}{2}$$

$$\frac{4}{7} \div \frac{11}{9} \qquad \frac{15}{1} \cdot \frac{5}{2}$$

$$\frac{4}{7} \cdot \frac{9}{11} \qquad \frac{15}{1} \cdot \frac{2}{5}$$

$$\frac{36}{77} \qquad \frac{15}{1} \cdot \frac{2}{5}$$

$$\frac{3}{1} \cdot \frac{2}{1}$$

$$\frac{3}{1} \cdot \frac{2}{1}$$

$$\frac{6}{1} \text{ or } \boxed{6}$$

Find the value of each expression. Final answers must be in simplest form (including improper fractions to mixed numbers).

1.
$$\frac{2}{3} + \frac{9}{3}$$

2.
$$\frac{1}{4} + \frac{1}{5}$$

3.
$$\frac{13}{20} - \frac{2}{5}$$

4.
$$\frac{5}{6} - 3\frac{1}{2}$$

5.
$$3\frac{3}{4} + 2\frac{1}{6}$$

6.
$$\frac{7}{2} \cdot \frac{3}{2}$$

7.
$$2\frac{1}{4} \cdot \frac{1}{18}$$

8.
$$\frac{3}{2} \div \frac{1}{8}$$

9.
$$\frac{3}{7} \div \frac{1}{5}$$

10.
$$\frac{2}{3} \div 1\frac{1}{3}$$

VERBAL EXPRESSIONS

ADDITION	SUBTRACTION	MULTIPLICATION	DIVISION	EXPONENTS
Plus	Minus	Multiplied by	Divided by	Square of $(2^{nd} power)$
Increased by	Decreased by	Times	Quotient of	Cube of (3 rd power)
More than	Fewer than	Product	Into	Power of
Sum of	Less	Twice, One-half, etc.		
	Less than	Of (usually with		
		fractions)		
	Difference of			

Write an algebraic expression for each verbal expression.

- The sum of two-fifths a number and eight: $\frac{2}{5}$
- Seven more than twice the difference a number and five: $\left[7+2(n-5)\right]$ or $\left[2(n-5)+7\right]$
- 1. The sum of 9 and a number

2. The difference of a number cubed and twelve

3. A number decreased by 8

4. Three less than 5 times a number

5. One-third the square of b

- **6.** The product of four and x increased by y
- 7. The quotient of a number and negative 5
- **8.** A number to the power of five less seven

- **9.** Twice the sum of 15 and a number
- **10.** The quotient of three and the sum of a number and 11

SOLVING EQUATIONS USING INVERSE OPERATIONS

Examples on Solving Equations Using Inverse Operations:

1.)
$$x + 72 = 14$$

 $-72 - 72$
 $x = -58$
 $x = -58$
 $x = -58$
 $x = -58$
 $x = -14$
 $x = -58$
 $x = -168$
 $x = -16$

2.)
$$-39 = r - 50$$
 3.) $-8w = -168$

$$\div (-8) \div (-8)$$

4.)
$$\frac{h}{15} = -5$$

 $\frac{\cdot 15 \cdot 15}{(h - .75)}$

6.)
$$-34 + \frac{n}{-3} = 2$$

 $+34 + 34$
 $\frac{n}{-3} = 36$
 $\cdot (-3) \cdot (-3)$
 $n = -108$

When using inverse operations, go in the "inverse order" of PEMDAS. (SADMEP)

Solve each equation using inverse operations. Final answers must be in simplest form (including improper fractions to mixed numbers). No decimals.

1.
$$x-6=-23$$

2.
$$x - (-8) = 22$$

3.
$$-4x = 14$$

4.
$$\frac{x}{7} = -8$$

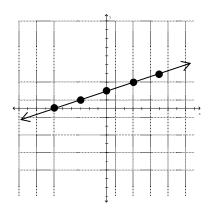
5.
$$\frac{2}{3}x = 10$$

6.
$$17 = -5 + x$$

7.
$$4x+11=27$$

8.
$$-2-9x = 34$$

9.
$$13 - x = -8$$


10.
$$\frac{3}{5}x + 2 = 7$$

GRAPHING POINTS ON A COORDINATE PLANE

For each equation, use the given x-coordinates to complete the table. Then, graph the line.

Example:
$$y = \frac{1}{3}x + 2$$

x	y
-6	0
-3	1
0	2
3	3
6	4

sample work:

$$y = \frac{1}{3}x + 2 \qquad y = \frac{1}{3}x + 2 \qquad y = \frac{1}{3}x + 2$$

$$y = \frac{1}{3} \cdot 0 + 2 \qquad y = \frac{1}{3}(-6) + 2 \qquad y = \frac{1}{3} \cdot 3 + 2$$

$$y = 0 + 2 \qquad y = -2 + 2 \qquad y = 1 + 2$$

$$y = 2 \qquad y = 0 \qquad y = 3$$

For each equation, use the given x-coordinates to complete the table. Show your work in the spaces provided. Then, graph the ordered pairs and line on the coordinate plane provided on the <u>answer page</u>.

1.
$$y = 3x - 1$$

	2
X	у
-2	
-1	
0	
1	
2	

2.
$$y = -x + 2$$

/	
X	у
-6	
-5	
-1	
4	
7	

3.
$$y = -2x - 7$$

х	у
-7	
-5	
-2	
0	
1	-

4.
$$y = \frac{1}{2}x + 3$$

х	у
-4	
-2	
0	
2	
4	

5.
$$y = \frac{2}{3}x + 4$$

х	у
-6	
-3	
0	
3	
6	

SLOPE-INTERCEPT FORM

$$y = mx + b$$

IDENTIFY THE SLOPE AND Y-INTERCEPT

1)
$$y = -\frac{2}{3}x + 1$$

2)
$$y = -\frac{1}{2}x - 5$$

3)
$$y = 3x - 2$$

4)
$$y = -\frac{1}{3}x - 1$$

5)
$$y = -\frac{1}{2}x + 2$$

6)
$$y = 2x + 1$$

7)
$$y = 3x + 1$$

8)
$$y = x + 2$$

SLOPE-INTERCEPT FORM

SOLVE FOR "Y"

13)
$$9 = 3y - 9x$$

14)
$$-12 = -3x - 3y$$

15)
$$-1 = y$$

16)
$$0 = -3 + y + \frac{1}{2}x$$

17)
$$6x + 25 + 5y = 0$$

18)
$$-x = -1 - \frac{1}{5}y$$

19)
$$15x = 9y$$

20)
$$3y = -9 - 2x$$

SOLVING EQUATIONS

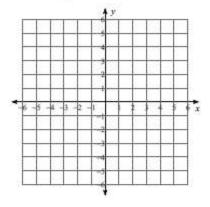
SOLVE EACH EQUATION

Solve each equation.

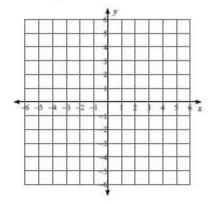
21)
$$1 - 7n - 7n = 1$$

22)
$$2v - 6 - 1 = -23$$

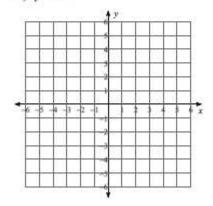
23)
$$-16 = -r - r$$

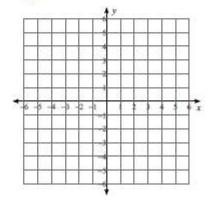

24)
$$-22 = 8 + 5x - 5$$

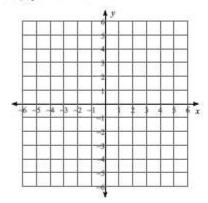
25)
$$-6x - x = -21$$

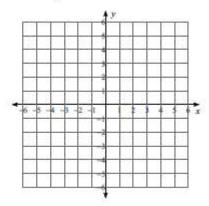

GRAPHING

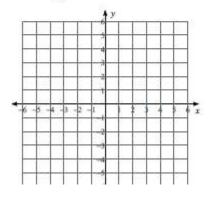
SKETCH THE GRAPH

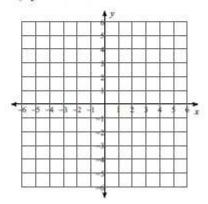

32)
$$y = -\frac{7}{2}x - 5$$


33)
$$y = \frac{3}{5}x + 3$$


34)
$$y = x - 2$$


35)
$$y = -7x - 3$$


36)
$$y = -x - 2$$


37)
$$y = \frac{1}{2}x + 2$$

38)
$$y = \frac{5}{2}x - 4$$

39)
$$y = 2x - 4$$

