REPORTING CATEGORY 5

#31-CHANGES TO ECOSYSTEMS

ENVIRONMENTAL CHANGE

- Ecosystem physically distinct, selfsupporting unit of interacting biotic and abiotic factors
- When analyzing how an event will change an ecosystem, keep these questions in mind:
- 1. Are producers affected?
- 2. Did nutrient/mineral levels change?
- 3. Are any organisms directly hurt/killed?
- 4. Did habitat loss occur?

#14-TROPHIC LEVELS

FEEDING RELATIONSHIPS

Food Web

- -More realistic path through an ecosystem made of many food chains
- -Energy flows through ecosystems from producers to consumers
- -Producers (make food) aka autotrophs
- -Consumers (use food by eating producers or other consumers) aka heterotrophs

ex: herbivores, carnivores, omnivores, decomposers, scavengers

#42-ECOLOGICAL SUCCESSION

- -Primary succession is a series of changes that occur in an area where no ecosystem has ever been.
- -Secondary succession occurs when there are a series of changes after a natural disturbance (hurricane, fire, etc..) It only can occur in a place where an ecosystem <u>has already existed</u>.
- -Pioneer species are the first species to populate an area.

#27-CYCLES OF MATTER

WATER CYCLE

Evaporation from Oceans, Lakes & Streams Transpiration from Plants

Condensation

Groundwater

Precipitation

Surface Runoff

#2-ECOLOGICAL SUCCESSION

GOAL IS A CLIMAX COMMUNITY

Ecosystems develop toward a stable, climax community. Biodiversity increases and plant and animal life becomes more complex.

#24-SYMBIOSIS

PERMANENT RELATIONSHIPS AMONG ORGANISMS

Interaction	Species A	Species B
Commensalism	Receives benefit	Not affected
<u>Mutualism</u>	Receives benefit	Receives benefit
<u>Parasitism</u>	Receives benefit	Harmed

#9-IMPACT ON AN ECOSYSTEM

ABSENCE OF A SINGLE TROPHIC LEVEL CAN IMPACT ENTIRE ECOSYSTEMS

Figure 4: Algal blooms on reefs can be caused by excess input of nitrogen and phosphorus which can fertilize the seaweeds and allow them to grow over live coral.

#46-ADAPTATIONS

Adaptation – any variation in an organism that makes it better suited to its environment that usually fulfills a <u>survival requirement</u>

Different ecosystems require different adaptations Examples:

- Tundra: freezing cold, soil frozen o Plants: short to avoid wind o Animals: migrate to avoid coldest periods
- Desert: very little water, can be very hot
- o Plants: long roots to find water o Animals: large ears to radiate heat

#37-TROPHIC LEVELS

ENERGY PYRAMIDS

- -Producers put in 100% of the energy into an ecosystem and form the base of the pyramid
- -Pyramid shape shows a decrease in *energy/biomass/numbers* as it goes from one trophic level to the next

#50-COMPETITION

 Competition – relationship in which both organisms are harmed from fighting over resources.

#40-MICROORGANISMS

LIVING THINGS THAT CANNOT BE SEEN WITH THE NAKED EYE

Maintain Health of Organisms

- Help digestion by breaking down compounds
- Used for vaccines and antibiotics

Maintain Health of Ecosystems

- Recycle carbon for plants to use
- Recycle nitrogen for plants to use
- Create **sugars** in marine ecosystems

Disrupt Health of Organisms

• Cause disease like malaria and ringworm

Disrupt Health of Ecosystems

 When numerous, toxins become concentrated

#12-TROPHIC LEVELS

10% RULE

- -Energy flows through an ecosystem in one direction from producers to various levels of consumers
- -100% of the energy starts at the producer level
- -At each trophic level, 90% of available energy is lost to heat
- -Each new trophic level only receives 10% of usable energy from the previous level

#11-SYMBIOSIS

COMMON RELATIONSHIPS

- Lichens: Mutualism between:
- Fungus (structure)
- Algae or cyanobacteria (provides food)
- Mycorrhizae: Mutualism between:
- Fungus (nutrient & water uptake for plant)
- Plant (carbohydrate for fungus)
- <u>Bacteria Nodules</u>: cyanobacteria and certain other forms of bacteria, especially those that live in the roots of legumes mutualistically, conduct <u>nitrogen fixation</u> as part of their metabolism

