

Mathematics

Invitational A • 2009

WRITE ALL ANSWERS WITH CAPITAL LETTERS

DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO!

1. Evaluate: $\left[1.2 \div \left(\frac{3}{5}\right)^2 - (3)^{-1}\right] \times 4!$

(A) 88

(B) 72 (C) $48\frac{9}{25}$ (D) $27\frac{2}{3}$

(E) 8

P -3¹/₄ R S 2.75

The distances between the hash marks () are equal. Find P + R + S.

(A) -5.75 (B) $-\frac{1}{2}$ (C) $2\frac{1}{2}$ (D) 4.25

(E) 6

3. Phil Upp's truck gets 17 miles per gallon of gas. He has \$20.00 to spend on gas. If the cost of a gallon of is gas is \$3.50, how far can Phil drive? (nearest whole mile)

(A) 70 miles

(B) 76 miles (C) 97 miles

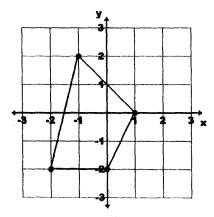
(D) 100 miles

(E) 102 miles

4. Line *l* going through points (-1, 3) and (k, -5) is perpendicular to x + 4y = 5. Find k.

(A) -5 (B) -3 (C) -1 (D) 2

(E) 5


5. Simplify: $\left(\frac{6w^2 + 7w - 3}{2w^3 + 5w^2 + 3w}\right) \left(\frac{w^2 - w - 2}{3w^2 - 7w + 2}\right)$

(A) $\frac{w-3}{w^2-2}$ (B) $\frac{w+2}{3w^2+2w}$ (C) $\frac{1}{w}$ (D) $\frac{3w-2}{4+w}$ (E) $\frac{3w+1}{2w}$

6. Ima Whett paddles her kayak at a constant speed of 5 mph relative to the water. She paddles upstream for 1 hour 20 minutes. The return trip back only takes 1 hour 5 minutes. Which of the following is the closest approximation of the speed of the current?

(A) $\frac{1}{2}$ mph (B) $\frac{1}{3}$ mph (C) $\frac{5}{6}$ mph (D) $\frac{5}{8}$ mph (E) $\frac{1}{4}$ mph

7. Rene drew this quadrilateral on the coordinate plane below. The coordinates of the vertices are integers. What is the area of his quadrilateral?

(A) $6\frac{1}{2}$ units² (B) 7 units²

(C) $7\frac{2}{3}$ units² (D) $8\frac{1}{4}$ units² (E) $8\frac{1}{2}$ units²

- 8. If a line in the plane of a circle is perpendicular to a radius at its endpoint on the circle then the line is ____ to the circle. (B) diagonal (D) adjacent (E) secant (C) tangent (A) complementary 9. $\angle A$ and $\angle B$ are complementary. The ratio of m $\angle A$ to m $\angle B$ is 4:5. Find the ratio of m $\angle A$ to its supplement. (B) 4:9 (C) 5:4 (D) 6:3 (E) 5:14 (A) 2:7 10. The graph best depicts Mei Strol's daily 6 minute walk. (speed is not truly linear in this case). During the time interval of 3 minutes to 4 minutes Mei is Time (minutes) (B) walking at a constant speed (C) standing still (A) walking on flat ground (D) decreasing speed (E) increasing speed 11. A line perpendicular to the axis of symmetry of a parabola is called the (A) focus (B) eccentricity (C) directrix (D) centroid (E) asymptote 12. The length of the sides of each of the small cubes is 1 cm. How many of the small cubes would need to be added to this figure to make a rectangular prism that is 4 cm long, 3 cm wide, and 2 cm tall? (C) 12 (A) 14 **(B)** 13 **(D)** 11 (E) 10
- 13. A laser beam from the top of a 30-ft building hits an object on the ground 100 ft from the base of the building. The angle of depression of the laser to the object is: (nearest second)

 - (A) 14° 24′ 11″ (B) 16° 6′ 9″
- C) 16° 41′ 57″
- (D) 17° 4′ 6′′ (E) 17° 27′ 27′′

14. F	Find the largest	value of θ if	$6\cos^2$	$\theta + \cos \theta$	= 2 and	$\pi \leq \theta$	$\leq 2\pi$.
-------	------------------	----------------------	-----------	------------------------	---------	-------------------	---------------

(A) $\frac{6\pi}{5}$ (B) $\frac{4\pi}{3}$ (C) $\frac{5\pi}{3}$ (D) $\frac{8\pi}{5}$ (E) $\frac{5\pi}{4}$

15. Simplify $\sin \theta \cot \theta \sec \theta - \cos^2 \theta$.

(A) $\sin^2\theta$ (B) $\csc^2\theta$ (C) $\sin 2\theta$ (D) $\sec^2\theta$

(E) 1

16. Let $x^5 - x^4 - px^3 + qx^2 - x - 1 = 0$, where p, q > 0. According to Descartes' Rule of Signs, how many possible positive roots are there?

(A) 5, 3, or 1

(B) 3 or 1

(C) 4, 2, or 0

(D) 2 or 0

 (\mathbf{E}) 0

17. The directrix of the parabola $8y = x^2 - 4x + 12$ is:

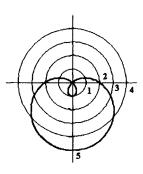
(A) x = 2

(B) y = 1 (C) $y = \frac{1}{8}$ (D) $x = -\frac{1}{4}$ (E) y = -1

18. If 5 adults and 2 teenagers work together, they can do a job in 1 day. If only 2 adults work, then 6 teenagers must in order to do the job in 1 day. If no adults work and only 1 teenager works, how long will it take the teenager to do the job?

(A) $7\frac{1}{2}$ days (B) 8 days (C) $8\frac{1}{3}$ days (D) $8\frac{2}{3}$ days (E) 9 days

19. A function y = f(x) is continuous on [a,b], if $f(a) < y_0 < f(b)$ then $y_0 = f(c)$ for some c in [a,b]. This theorem is the:


(A) Intermediate Value Theorem (B) Mean Value Theorem

(C) Sandwich Theorem

(D) Max-Min Theorem

(E) Fundamental Theorem of Calculus

20. Which of the following polar equations will produce this graph on the polar grid?

(A) $r = 1 + 5\sin\theta$

(B) $r = 2 - 4\sin\theta$

(C) $r = 1 + 2\cos\theta$

(D) $r = 2 - 3\sin\theta$

(E) $r = 2 - 5\cos\theta$

21. Let $f(x) = ax^5 - bx^4 - bx^3 + ax^2 + ax - b$. Find f''(1).

(A) 22a - 18b (B) 18a - 6b (C) 22a - 19b (D) 18a - 6b (E) 22a - 7b

UIL Math A 2009 - page 3

	4 white socks. Wh	at is the probabili	ty that he selects t	two black socks? (nearest percent)
	(A) 9 %	(B) 18 %	(C) 32 %	(D) 4 %	(E) 10 %
23.	_	he odds of her pu	ılling out a \$10 bil		510 bills, four \$5 bills, any \$10 bills would have
	(A) 1	(B) 3	(C) 6	(D) 9	(E) 12
24.	How many subsets	s containing 4 me	mbers can be mad	le from the set {2,	1, 3, 4, 7, 11}?
	(A) 6	(B) 10	(C) 15	(D) 20	(E) 21
25.	Which of the follo	wing was the first	Nigerian woman	to be awarded a	loctorate in mathematics?
	(A) Emmy Noet (D) Karen E. Sr		(B) Freda Porte (E) Grace Alele		(C) Hypatia
26.	Find the harmonic	c mean of the root	$+ x^3 - 7x^2 +$	14x - 8 = 0.	
	(A) $1\frac{5}{7}$	(B) $1\frac{3}{4}$	(C) 2	(D) $2\frac{1}{3}$	(E) $2\frac{2}{5}$
27.	If R, S, and T are	distinct digits the	n RST $_2$ — ST $_3$	— R ₄ has a num	eric value in base 10 of:
	(A) $2R - S + 2$	T (B) $-S$	(C) $S + T$	(D) 5R	(E) 3R - S
28.	Find the ratio of t 2, 3	he median to the 1, 5, 2, 4, 3, 2, 0, 5,		ing list of numbe	ers.
	(A) 1:1	(B) 3:2	(C) 3:5	(D) 2:5	(E) 1:2
29.					ne next day and made a ts, including Missy, took
	(A) 22	(B) 24	(C) 25	(D) 26	(E) 28
30.	The set {, 6,	-4, -2, 0, 2, 4, 6,	,} is closed unde	er which of the fol	lowing operations :
	I. ad	ldition II. subt	raction III. mu	ltiplication IV.	division
	(A) all of these	(B) I & III only	(C) I, II, & III	(D) II & IV onl	y (E) none of these
	·				

22. Seymore Endelite randomly selects two socks from his drawer to wear to school. The socks are identical except for their color and are not paired up. He has 8 blue socks, 6 black socks, and

			•	_							
31.	If	the roots of	$x^3 +$	\cdot bx ²	+ cx +	$\mathbf{d} = 0$) are — 5,	1, and	3, then	b+c+c	l equals:

(A) - 1

(B) 0

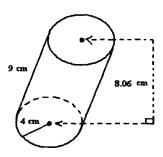
(C) 3

(D) 31

(E) 33

32. Mr. White's college math class has 40 students. 75% of the students are math majors. 32 of the students passed the final exam. 75% of those who passed the final exam are math majors. What percentage of the class who were not math majors passed the final exam?

(A) 8%


(B) 20%

(C) 25%

(D) 75%

(E) 80%

33. Find the lateral area, nearest square cm, of the oblique cylinder.

(A) 452 cm^2

(B) 352 cm^2

(C) 327 cm^2

(D) 226 cm^2

(E) 176 cm^2

34. If $a_1 = -4$, $a_3 = -9$, and $a_4 = 13.5$ are terms of a geometric sequence, then $a_2 = -9$.

(A) - 6 (B) - 5

(C) 1.5

(D) 6

(E) 6.75

35. If $y^2 = -4 + 0i$ and $y^3 = 0 - 8i$ where y = a + bi then a + b equals:

(A) - 2 (B) - 1 (C) 0

(D) 1

(E) 2

36. Pop Eye takes his family sailing. They leave dock A and sail 1.5 miles on a course of 30° to buoy B. They turn and travel 1.75 miles on a bearing of 110° to buoy C. How far is it from buoy C to dock A? (nearest tenth)

(A) 1.6 miles

(B) 2.0 miles

(C) 2.3 miles

(D) 2.5 miles

(E) 2.7 miles

37. How many points of intersection occur when $r = 2\cos\theta + 1$ and $\theta = \pi$ are graphed on a polar coordinate system?

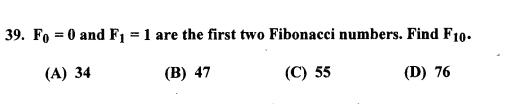
(A) 0

(B) 1

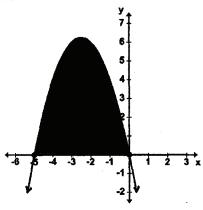
(C) 2

(D)3

(E) 4


38. $\sum_{k=0}^{2} (kx + (k+1)y) = ?$

(A) 4x + 3y (B) 2x + 3y


(C) 3y

(D) 3x + 6y

(E) 2x + y

(B)
$$19\frac{2}{3}$$

(B)
$$19\frac{2}{3}$$
 (C) $20\frac{1}{2}$

(D)
$$20\frac{5}{6}$$

(E)
$$21\frac{1}{4}$$

(E) 89

41. Use the angle of rotation, θ (nearest degree), where 0 ° < θ < 90 °, to transform the conic $x^2 + xy + y^2 = 3$ into an equation that does not contain an xy term. The equation is:

(A)
$$x^2 + y^2 = 9$$

(B)
$$3x^2 + y^2 = 6$$

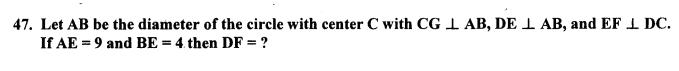
(C)
$$x^2 - 2y^2 = 3$$

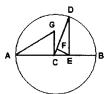
(D)
$$x^2 + 3y^2 = 6$$

(E)
$$3x^2 + y^2 = 3$$

42. If $f(x) = \frac{2x+3}{4x-5}$, then f'(1) =

(A)
$$-22$$
 (B) -5 (C) -2


$$(B) -5$$


$$(C)-2$$

(D)
$$\frac{1}{2}$$

43. Betty Luzes rolls a fair die 4 times. What is the mathematical expectation of the sum of the outcomes of the 4 rolls?

- 44. Five married couples attend the square dance planning meeting. How many committees of four people can be chosen if no committee is to include a husband-and-wife pair?
 - (A) 20
- (B) 25
- (C) 50
- (D) 80
- **(E)** 105
- 45. Let $R = \{1, 3, 5\}$, $S = \{0, 2, 4\}$, and $T = \{1, 2, 3\}$. How many elements are in $(R \cup T) \cap (S \cup T)$?
 - (A) 6
- (B) 5
- (C) 4
- (D) 3
- (E) 2
- 46. The circles $x^2 + y^2 + 3x 6y + 5 = 0$ and $2x^2 + 2y^2 + 5x 6y + 3 = 0$ intersect in two points. The slope of the line through the two points of intersection is:
 - $(A) \frac{1}{6}$
- (B) $\frac{1}{3}$
- (C) $\frac{7}{6}$
- (D) $\frac{3}{5}$
- $(E) \frac{5}{6}$

(A	 _

(B)
$$5\frac{7}{13}$$
 (C) 6

(D)
$$6\frac{1}{2}$$
 (E) 7

48. How many of the following numbers are NOT solutions to $7-5|3x+1| \ge -1$?

-0.987 -0.777... .222...

0.3

.12

(B) 2 (C) 3 (D) 4

(E) 5

49. It is precisely 2:45 pm on a circular clock. What is the measure of the smaller angle formed by the minute hand and the hour hand of the clock?

(A) 192°

(B) 187.5

(C) 150°

(D) 168°

(E) 172.5°

50. $y^2 - x^2 = 0$ is an equation of a degenerate conic. Which of the following is the best graphical representation of this equation?

(A) point

(B) line

(C) parallel lines

(D) intersecting lines

(E) no graph

51. Let f(x) = 4 - x and g(x) = 3x - 5 and h(x) = 2x. Find h(f(g(0))).

(A) 7

(B) 9

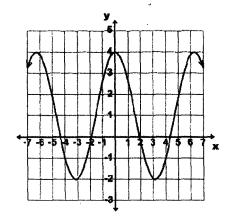
(C) 14

(D) 18

(E) 19

52. Points A, B, C, and D are the vertices of a square. Point E is on the interior of the square such that points A, B, and E form an equilateral triangle. A line segment connects points D and E. Another line segment connects points C and E. Find m∠CED.

(A) $\frac{5\pi}{12}$ (B) $\frac{\pi}{12}$ (C) $\frac{2\pi}{3}$ (D) $\frac{\pi}{9}$ (E) $\frac{5\pi}{6}$


53. A regular deck of 52 cards is shuffled and the top five cards are dealt face up. What is the probability, nearest $\frac{1}{1000}$ %, that all 5 cards are face cards (Jacks, Queens, Kings)?

(A) $\frac{1}{40}\%$ (B) $\frac{3}{100}\%$ (C) $\frac{2}{25}\%$ (D) $\frac{13}{200}\%$ (E) $\frac{23}{500}\%$

54. Vector v = (2, 9) is perpendicular to vector w = (4, k). Find k.

(A) $-\frac{1}{9}$ (B) $-\frac{1}{8}$ (C) $-\frac{8}{9}$ (D) $-1\frac{1}{8}$ (E) -18

55. The graph shown is the graph of which of the following equations.

$$(A) y = 1 + 3\sin(x)$$

(B)
$$y = 3\cos(x+1)$$

$$(C) y = \cos(3x + 1)$$

(D)
$$y = 1 + 3\cos(x)$$

(E)
$$y = 3\sin(x+1)$$

- 56. Point P has polar coordinates of $(4, \frac{2\pi}{3})$ and rectangular coordinates of (x, y). Where does point P lie on the Cartesian coordinate plane?
 - (A) QII
- (B) QIII
- (C) QIV
- (D) x-axis
- (E) y-axis

- 57. How many asymptotes does $f(x) = \frac{2-3x^2}{x-1}$ have?
 - (A) 0
- **(B)** 1
- (C) 2
- (D) 3
- (E) 4
- 58. The slope of the line tangent to the curve $y = 2x^3 3x^2 5$ at x = 2 is 12. The point of intersection of the tangent line and the curve is:

 - (A) (2,2) (B) (-1,-2) (C) (-1,2) (D) (2,1) (E) (2,-1)

- 59. Evaluate: $\int_{-n}^{n} (x^3 3x^2 5) dx$
- (A) $\frac{n^4}{2}$ (B) -10n (C) $-2n(n^2+5)$ (D) $\frac{n^4}{2}+2n^2$ (E) $2n(n^2-5)$
- 60. The coordinates of the vertices of \triangle ABC are (-1,2), (1,0) and (-2,-2). The medians of the \triangle ABC intersect at (x, y). Find x + y.
 - (A) 1

- (B) $\frac{3}{4}$ (C) $\frac{1}{3}$ (D) $-\frac{2}{3}$ (E) -1

University Interscholastic League **MATHEMATICS CONTEST** HS • Invitation A • 2009 **Answer Key**

1.	В	21. A	41.	В
2.	A	22. E	42.	A
3.	C	23. B	43.	C
4.	В	24. C	44.	D
5.	C	25. E	45.	D
6.	A	26. A	46.	A
7.	В	27. E	47.	В
8.	C	28. A	48.	C
9.	A	29. C	49.	E
10.	В	30. C	50.	D
11.	C	31. A	51.	D
12.	A	32. E	52.	E
13.	C	33. D	53.	В
14.	C	34. D	54.	C
15.	A	35. E	55.	D
16.	В	36. D	56.	A
17.	E	37. B	57.	C
18.	D	38. D	58.	E
19.	A .	39. C	59.	C
20.	D	40. D	60.	D