

Mathematics SAC • Fall 2006

WRITE ALL ANSWERS WITH CAPITAL LETTERS

DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO!

1.	1. Evaluate: $1 \times (2+3)^{-1} - 4 \div \frac{5}{6} + 7 \times (8)^{0}$						
	(A) $2\frac{2}{5}$	(B) $3\frac{3}{5}$	(C) $2\frac{3}{5}$	(D) $-3\frac{3}{5}$	(E) $-2\frac{1}{5}$		
2.	If x is 40% less tha	an y and y is 30%	more than z, then	x is	than z.		
	(A) 10% more (B) 12% less	(C) 7.8% more	(D) 78% less	(E) 22% less		
3.	3. Mora Doe goes to the 25% off book sale. She buys 4 romantic novels which cost \$11.95 each before the sale and includes tax. She gave the clerk 2 twenty-dollar bills. How much change should Mora receive?						
	(A) \$13.11	(B) \$7.80	(C) \$4.15	(D) \$3.59	(E) \$1.95		
4.	If $9x^2 - 12x + 4$	$= (ax - b)^2 \text{ then}$	n a + b =				
	(A) - 6	(B) -3	(C) 1	(D) 5	(E) 6		
5.	5. Harry Hare drove 210 km to Myrtle Turtle's house. Part of the 4 hour trip was in town at 30 km/h and the rest was on a major highway at 60 km/h. How many km did Harry drive on the major highway?						
	(A) 30 km	(B) 60 km	(C) 120 km	(D) 150 km	(E) 180 km		
6.	Which equality ax	iom of addition is	demonstrated by	(ax + by) + c =	ax + (by + c)?		
	(A) Identity	(B) Associative	(C) Inverse	(D) Commutat	ive (E) Distributive		
7.	7. The sides of a triangle are 9 in, 12 in, and 15 in. The triangle is a(n) triangle:						
	(A) Acute	(B) Equilateral	(C) Isosceles	(D) Obtuse	(E) Right		
8.	8. An isosceles trapezoid has a top base of 8 cm, a bottom base of 14 cm, and a slanted side length of 5 cm. Find the area of the isosceles trapezoid.						
	(A) 55 cm ²	(B) 44 cm ²	(C) 22 cm ²	(D) 16 cm ²	(E) 4 cm ²		
9.	Rene drew △ABO triangle.	C using the coordi	nates (1,2), (2, —	2) and (5,1). Find	the area of Rene's		
	(A) 7.5 units ²	(B) $5.5\sqrt{2}$ unit	ts ² (C) 7.5 un	its ² (D) 6 unit	ts ² (E) $.5\sqrt{2}$ units ²		
10.	Simplify: log b(3	$xy) - \log_b(\frac{3x}{2y}) +$	$-\log_{b}(3y^{2})$				
	(A) $2\log_b(3y)$	(B) 2log b(6x)	(C) 6log _b (2xy)	(D) 4log _b (6y)	(E) $4\log_b(3xy)$		

11.	The graph of	$x^2 + y^2 -$	4x + 12y +	30 = 0 is a	circle with a	a diameter of:	(nearest tenth)
-----	--------------	---------------	------------	-------------	---------------	----------------	-----------------

- (A) 3.2 units
- (B) 5.0 units
- (C) 6.3 units
- (D) 8.9 units
- (E) 10.0 units
- 12. Line m goes through points (1, -1) and (-3, 1). Line n goes through points (1, 1) and (x, y). Which of the following points lies on line n if $m \perp n$?
 - (A) (0,1)

- (B) (1,-1) (C) (1,-3) (D) (-1,-3) (E) (0,0)
- 13. Which of the equations will produce the shaded portion of the graph shown?

(A)
$$y < x^2 + 3x + 3$$

(B)
$$y > x^2 - 3x + 4$$

(C)
$$y < x^2 - 2.5x + 5$$

(D)
$$y > x^2 - 2.5x + 4$$
 (E) $y > x^2 - 3x + 5$

(E)
$$y > x^2 - 3x + 5$$

- 14. Let tan A = $\frac{7}{24}$, where A is in QIII. Find cos A.
- (A) $-\frac{7}{25}$ (B) $-\frac{7}{24}$ (C) $-\frac{24}{25}$ (D) $\frac{7}{25}$
- (E) $\frac{24}{25}$
- 15. An equivalent expression for $(\sin x + \cos x)^2 + (\sin x \cos x)^2$ is:
 - (A) 2
- (B) 2cos x

- (C) $\sin x \cos x$ (D) $-2\sin x$ (E) $\sin^2 x \cos^2 x$
- 16. Georg Alexander picks the special figure and places it on a five-peg-by-five-peg geoboard. Find the area enclosed in the figure.

- (A) 7.5 units^2
- (B) 8 units^2
- (C) 8.5 units^2
- (D) 9 units^2
- (E) 9.5 units^2

UIL Math SAC 2006 - page 2

17.	The first five terms of an infinite arithmetic sequence is $6\frac{1}{4}$, A, B, C, $12\frac{1}{2}$, Find A + B + C						
	(A) $9\frac{7}{8}$	(B) $14\frac{1}{2}$	(C) $18\frac{3}{4}$	(D) 25	(E) $28\frac{1}{8}$		
18.	\triangle DEF is an obtood \triangle DEF to the		ngle such that m∠	DEF is 104° and I	EF is 14 cm. Find the area		
	(A) 118 cm ²	(B) 95 cm ²	(C) 77 cm ²	(D) 60 cm ²	(E) 48 cm ²		
19.	The relation {(0,	0), (2, 2), (2, -2	2), (6, 8), (6, — 8)}	is:			
	(A) not a funct	ion (B)	a one-to-one func	tion (C) a	function, but not one-to-one		
	(D) an even func	etion (E) an	odd function				
20.	Find the area of	the shaded regio	n. (nearest square	unit)	4		
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 6		
21.	Which of the fol	lowing sequences	s is divergent?		,		
	$(A) \left\{ \frac{2n+1}{3n-2} \right\}$	$(B) \left\{ \frac{-1^n}{n^2 + n} \right\}$	(C) $\left\{ \frac{(-1)^n(n+1)}{n+2} \right\}$	$\left.\begin{array}{c} \\ \end{array}\right\} (D) \left\{\frac{4n^2-n^2}{10+2n^3}\right\}$	$\left\{\frac{6n^2+3n-1}{n^2+8n+16}\right\}$		
22.		•	·	d balls. Two balls abability that both	are randomly selected, are blue?		
	(A) $\frac{4}{33}$	(B) $\frac{5}{22}$	(C) $\frac{1}{11}$	(D) $\frac{20}{33}$	(E) $\frac{1}{66}$		
23.	Which of the fol	llowing numbers	is considered to b	e an "abundant" ı	number?		
	(A) 26	(B) 28	(C) 30	(D) 32	(E) 34		
24.	. The number of	integers that satis	sfy the inequality	new $\frac{3}{7} < \frac{n}{14} < \frac{2}{3}$	is:		
	(A) 1	(B) 2	(C) 3	(D) 4	(E) 5		
25. Define $n \bigstar$ to be n^n . Compute $(2 \bigstar) \bigstar$.							
	(A) 256	(B) 64	(C) 16	(D) 8	(E) 4		

University Interscholastic League MATHEMATICS CONTEST HS • SAC • 2006 Answer Key

1. A

2. E

3. C

4. D

5. E

6. B

7. E

8. B

9. A

10. D

11. C

12. D

13. B

14. C

15. A

16. B

17. E

18. B

19. A

20. B

21. C

22. C

23. C

24. C

25. A